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Abstract As multi-core systems are becoming more popular in real-time embedded
systems, strict timing requirements for accessing shared resources must be met. In par-
ticular, a detailed latency analysis for double data rate dynamic RAM (DDR DRAM)
is highly desirable. Several researchers have proposed predictable memory controllers
to provide guaranteed memory access latency. However, the performance of such con-
trollers sharply decreases as DDR devices become faster and the width of memory
buses is increased. High-performance commercial-off-the-shelf (COTS) memory con-
trollers in general-purpose systems employ open row policy to improve average case
access latencies and memory throughput, but the use of such policy is not compatible
with existing real-time controllers. In this article, we present a new memory controller
design together with a novel, composable worst case analysis for DDR DRAM that
provides improved latency bounds compared to existing works by explicitly modeling
the DRAM state. In particular, our approach scales better with increasing memory
speed by predictably taking advantage of shorter latency for access to open DRAM
rows. Furthermore, it can be applied to multi-rank devices, which allow for increased
access parallelism. We evaluate our approach based on worst case analysis bounds
and simulation results, using both synthetic tasks and a set of realistic benchmarks. In
particular, benchmark evaluations show up to 45 % improvement in worst case task

B Zheng Pei Wu
zpwu@uwaterloo.ca

Rodolfo Pellizzoni
rpellizz@uwaterloo.ca

Danlu Guo
dlguo@uwaterloo.ca

1 Department of Electrical and Computer Engineering, University of Waterloo,
Waterloo, Canada

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11241-016-9253-4&domain=pdf


www.manaraa.com

762 Real-Time Syst (2016) 52:761–807

execution time compared to a competing predictable memory controller for a system
with 16 requestors and one rank.

Keywords Timing analysis · DRAM · Memory controller

1 Introduction

In real-time embedded systems, the use of chip multiprocessors (CMPs) is becoming
more popular due to their low power and high performance capabilities. As applications
running on these multi-core systems are becoming more memory intensive, the shared
main memory resource is turning into a significant bottleneck. Therefore, there is a
need to bound the worst case memory latency caused by contention among multiple
cores to provide hard guarantees to real-time tasks. Several researchers have addressed
this problem by proposing new timing analyses for contention in main memory and
caches (Schranzhofer et al. 2011; Schliecker et al. 2010, 2008). However, such analyses
assume a constant time for each memory request (load or store). In practice, modern
CMPs use double data rate dynamic RAM (DDR DRAM) as their main memory. The
assumption of constant access time in DRAM can lead to highly pessimistic bounds
because DRAM is a complex and stateful resource, i.e., the time required to perform
one memory request is highly dependent on the history of previous and concurrent
requests.

DRAM access time is highly variable because of two main reasons: (1) DRAM
employs an internal caching mechanism where large chunks of data are first loaded
into a row buffer before being read or written. (2) In addition, DRAM devices use a
parallel structure; in particular, multiple operations targeting different internal buffers
can be performed simultaneously. Due to these characteristics, developing a safe yet
realistic memory latency analysis is very challenging. To overcome such challenges,
a number of other researches have proposed the design of predictable DRAM con-
trollers (Paolieri et al. 2013; Akesson et al. 2007; Shah et al. 2012; Goossens et
al. 2013; Reineke et al. 2011). These controllers simplify the analysis of memory
latency by statically pre-computing sequences of memory commands. The key idea
is that static command sequences allow leveraging DRAM parallelism without the
requirement to analyze dynamic state information. Existing predictable controllers
have been shown to provide tight, predictable memory latency for hard real-time tasks
when applied to older DRAM standards such as DDR2. However, as we show in
our evaluation, they perform poorly in the presence of more modern DRAM devices
such as DDR3 (JEDEC 2012). The first drawback of existing predictable controllers
is that they do not take advantage of the caching mechanism. As memory devices
are getting faster, the performance of predictable controllers is greatly diminished
because the difference in access time between cached and not cached data in DRAM
devices is growing. Furthermore, as memory buses are becoming wider, the amount
of data that can be transferred in each bus cycle increases. For this reason, the abil-
ity of existing predictable controllers to exploit DRAM access parallelism in a static
manner is diminished. Finally, memory controllers employed in commercial-off-the-
shelf (COTS) systems are typically optimized for average case latency and maximum
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throughput, and they behave quite differently compared to the discussed real-time con-
trollers. Hence, existing latency bounds cannot directly be applied to such controllers.

Therefore, in this article we consider a different approach that takes advantage of the
DRAM caching mechanism by explicitly modelling and analyzing DRAM state infor-
mation. In addition, we dynamically exploit the parallelism in the DRAM structure
to reduce the interference among multiple requestors (cores or DMA). Our approach
relies on the design of a new predictable memory controller, which fairly arbitrates
among commands of different requestors. The structure of our controller is similar to
existing controllers, but compared to COTS systems, we disable request reordering to
avoid a requestor being unfairly delayed (possibly forever). Our technique relies on
statically partitioning the available main memory (DRAM banks) among requestors.
As such, it is targeted at partitioned real-time systems, such as integrated modular
avionics systems (Radio 1991), where different applications are allocated on individ-
ual cores and communication between applications is limited. For the same reason, it
is also restricted to multi-core, rather than many-core systems; in the evaluation, we
consider systems with up to 16 requestors.

In more details, the major contributions of this work are the following. (1) We
discuss the design of a new dynamic, predictable memory controller based on sta-
tic bank partitioning. (2) Based on the discussed controller, we derive a worst case
DDR DRAM memory latency analysis for individual load/store requests issued by a
requestor under analysis in the presence of multiple other requestors contending for
memory access. Our analysis is composable, in the sense that the latency bound does
not depend on the activity of the other requestors, only on the number of requestors,
and it makes no assumption on the characteristics of the requestor under analysis (i.e.,
it can be an in-order/out-of-order core, DMA, etc.). (3) Based on the latency bounds
for individual requests, we show how to compute the overall latency suffered by a task
running on a fully timing compositional core (Wilhelm et al. 2009). (4) We evaluate
our analysis against previous predictable approaches using both synthetic tasks and a
set of benchmarks executed on an architectural simulator. In particular, we show that
our approach scales significantly better with faster memory devices. We show results
both in terms of worst case analysis bounds, and measured latency on the simulator.
For a commonly used DRAM in a system with 16 requestors and no inter-core com-
munication, our method shows up to 45 % improvements on task worst case execution
time compared to Paolieri et al. (2013).

The rest of the article is organized as follows. Section 2 provides required back-
ground knowledge on how DRAM works. Section 3 compares our approach to related
work in the field. Section 4 discusses our memory controller design and Sect. 5 and 6
detail our worst case latency analysis. Section 7 discusses shared data, while evaluation
results are presented in Sect. 8. Finally, Sect. 9 concludes the article.

2 DRAM basics

Modern DRAM memory systems are composed of a memory controller and mem-
ory device. Figure 1 shows an example of such system, where multiple cores and
DMA devices send requests to load or store data to the memory controller; the con-

123



www.manaraa.com

764 Real-Time Syst (2016) 52:761–807

Fig. 1 DDR DRAM organization

troller handles individual requests by controlling the operation of the memory devices,
which stores the actual data. Since our request latency analysis is independent of the
characteristics of the hardware entity communicating with the memory controllers, in
Sects. 2–5 we use the term requestor to denote any component (core or DMA) that
can send requests to the controller.

The device and controller are connected by a command bus and a data bus. The
command bus is used to transfer memory commands, which controls the operation of
the device, while the data bus carries the transferred data associated with a request.
The two buses can be used in parallel: a request of one requestor can use the command
bus while a request of another requestor uses the data bus. However, no more than
one request can use the command bus (or data bus) at the same time. The logic of the
controller is typically divided into a front end and back end. The front end generates
one or more memory commands for each request. The back end arbitrates among
generated commands and issues them to the device through the command bus. As we
discuss in Sect. 2.1, there are specific timing constraints that the back end must satisfy.

Modern memory devices are organized into ranks and each rank is divided into
multiple banks, which can be accessed in parallel provided that no collisions occur on
either buses. Each bank comprises a row-buffer and an array of storage cells organized
as rows1 and columns as shown in Fig. 1. In addition, modern systems can have
multiple memory channels (i.e. multiple command and data bus). Each channel can
be treated independently or they could be interleaved together. This article treats each
channel independently and focuses on the analysis within a single channel. Note that
optimization of requestor assignments to channels in real-time memory controllers
has been discussed in Gomony et al. (2013, 2015).

To access the data in a DRAM row, an Activate (ACT ) command must be issued
to load the data into the row buffer before it can be read or written. Once the data is
in the row buffer, a CAS (read or write) command can be issued to retrieve or store
the data. If a second request needs to access a different row within the same bank, the
row buffer must be written back to the data array with a Pre-charge (PRE) command
before the second row can be activated. Finally, a periodic Refresh (REF) command

1 DRAM rows are also referred to as ‘pages’ in the literature.
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must be issued to all ranks and banks to ensure data integrity. Note that each command
takes one clock cycle on the command bus to be serviced.

A row that is cached in the row buffer is considered open, otherwise the row is
considered closed. A request that accesses an open row is called an Open Request
and a request that accesses a closed row is called Close Request. To avoid confusion,
requests are categorized as load or store while read and write are used to refer to
memory commands. When a request reaches the front end of the controller, the correct
memory commands will be generated based on the status of the row buffers. For open
requests, only a read or a write command is generated since the desired row is already
cached in the row buffer. For close request, if the row buffer contains a row that is
not the desired row, then a PRE command is generated to close the current row. Then
an ACT is generated to load the new row and finally read/write is generated to access
data. If the row buffer is empty, then only ACT and read/write commands are needed.
Finally, all open rows must be closed with PRE commands before a REF can be issued.

The size of a row is large (several kB), so each request only accesses a small portion
of the row by selecting the appropriate columns. Each CAS command accesses data in
a burst of length BL and the amount of data transferred is BL · WBU S , where WBU S is
the width of the data bus. Since DDR memory transfers data on rising and falling edge
of clock, the amount of time for one transfer is tBU S = BL/2 memory clock cycles.
For example, with BL = 8 and WBU S of 64 bits, it will take 4 cycles to transfer 64
bytes of data.

2.1 DRAM timing constraints

The memory device takes time to perform different operations and therefore timing
constraints between various commands must be satisfied by the memory controller.
The operation and timing constraints of memory devices are defined by the JEDEC
standard (JEDEC 2012). The standard defines different families of devices, such as
DDR2/DDR3/DDR4. As an example, Table 1 lists all timing parameters of interest to
the analysis, with typical values for DDR3 and DDR2 devices.2 Note that as the fre-
quency increases and thus the clock period becomes smaller, the value of the timing
parameters in number of clock cycles also tends to increase. Figures 2 and 3 illus-
trate the various timing constraints. Square boxes represent commands issued on the
command bus (A for ACT, P for PRE and R/W for Read and Write). The data being
transferred on the data bus is also shown. To avoid excessive clutter, command and data
transfers belonging to the same request are shown on the same line, but we stress again
that the command and data buses can be operated in parallel. Horizontal arrows rep-
resent timing constraints between different commands while the vertical arrows show
when each request arrives. R denotes rank and B denotes bank in the figures. Note
that constraints are not drawn to actual scale to make the figures easier to understand.

Figure 2 shows constraints related to banks within the same rank. All three requests
are close requests targeting to the same rank. Request 1 and 3 are accessing Bank 0

2 We use DDR3 in our evaluation since we found it to be the most commonly employed standard in related
work on predictable DRAM controllers.
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Table 1 JEDEC timing constraints in memory cycles

Parameters Description DDR2-800E DDR3-800D DDR3-1333H DDR3-2133M

tRC D ACT to READ/WRITE
delay

6 5 9 13

tRL READ to data start 6 5 9 13

tW L WRITE to data start 5 5 7 10

tBU S Data bus transfer 4 4 4 4

tR P PRE to ACT delay 6 5 9 13

tW R End of WRITE data to
PRE delay

6 6 10 16

tRT P Read to PRE delay 3 4 5 8

tR AS ACT to PRE delay 18 15 24 35

tRC ACT to ACT (same bank) 24 20 33 48

tR RD ACT to ACT (different
bank)

3 4 5 6

tF AW Four ACT window 14 16 20 26

tRT W READ to WRITE delay 6 7 8 9

tW T R WRITE to READ delay 3 4 5 8

tRT R Rank to rank switch delay 1 2 2 2

tRFC Time required to refresh a
row

195 ns 160 ns 160 ns 160 ns

tRE F I REF period 7.8 us 7.8 us 7.8 us 7.8 us

R1 
B0 Data 

R1 
B1 Data 

Request 1 Request 3 

Request 2 

tRTP
tRAS

tRC

tRCD tRL tBUS tRP

tRRD tRTW

tRCD tBUStWL

tRCD

tWTR

tWR

A R P A R 

A W P 

Fig. 2 Timing constraints for banks in same rank

while Request 2 is accessing Bank 1. Notice the write command of Request 2 cannot
be issued immediately once the tRC D timing constraint has been satisfied. This is
because there is another timing constraint, tRT W , between read command of Request
1 and write command of Request 2, and the write command can only be issued once
all applicable constraints are satisfied. Similarly, the tW T R timing constraint between
the end of the data of Request 2 and the read command of Request 3 must be satisfied
before the read command is issued. Figure 3 shows timing constraints between different
ranks, which only consist of tRT R (Wang 2005). This is the time between end of data
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R1 
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Request 1 Request 3 

Request 2 

tRCD tRL tBUS

tRCD tBUStWL

tRL tBUS

tRTR tRTR

Data A R 

W

R Data 

Data A 

Fig. 3 Timing constraints between different ranks

of one rank and beginning of data of another rank. Note Request 3 is targeting an open
row, therefore, it does not need to issue PRE or ACT command.

There are four important observations to notice from the timing diagrams. (1) The
access latency for a close memory request is significantly longer than an open memory
request. There are long timing constraints involved with PRE and ACT commands,
which are not needed for open requests. For example, tRC dictates a large time gap
between two ACT commands to the same bank. (2) Switching from servicing load to
store requests and vice-versa within the same rank incurs a timing penalty. There is a
constraint tRT W between issuing a read command and a successive write command.
Even worse, the tW T R constraint applies between the end of the data transmission for
a write command and any successive read command. (3) Different banks within the
same rank can be operated in parallel to a certain degree. For example, two successive
reads or two successive writes to different banks do not incur any timing penalty
besides contention on data bus. Furthermore, PRE and ACT commands to different
banks can be issued in parallel as long as the tR R D and tF AW constraints are met. (4)
Different ranks can also be operated in parallel even more effectively. For example,
there are no constraints between PRE or ACT of one rank and another rank and thus
they only contend on the command bus. CAS commands between different ranks only
need to satisfy the rank to rank switching constraint, tRT R .

2.2 DRAM row policy and mapping

In general, the memory controller can employ one of two different polices regarding
the management of row buffers: Open Row and Close Row Policy. Under open row
policy, the memory controller leaves the row buffer open for as long as possible. The
row buffer will be pre-charged if the refresh period is reached or another request needs
to access a different row (i.e., row miss). If a task has a lot of row hits, then only a CAS
command is needed for each of those requests, thus reducing latency. However, if a task
has a lot of row misses, each miss must issue ACT and CAS commands and possibly a
PRE command as well. Therefore, the overall latency for all requests performed by a
task under open row policy depends on the row hit ratio of the task itself. In contrast,
close row policy automatically pre-charges the row buffer after every request. Under
this policy, the timing of every request is eminently predictable since all requests
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have an ACT and a CAS command and thus incur the same latency. Furthermore,
the controller does not need to schedule pre-charge commands which reduce collision
on command bus. The downside is that the overall latency for all requests performed
by a task might increase since a row must be opened and closed for each request.
High-performance controllers in general-purpose systems employ open-page policy
since it typically leads to better average-case delay (Kim et al. 2014). On the other
hand, several predictable real-time controllers rely on the more predictable close-page
policy. Finally, note that in some embedded memory controllers, for example in the
Freescale P4080 embedded platform (NXP 2015), the policy is configurable.

When a request arrives at the memory controller, the incoming memory address
must be mapped to the correct rank, bank, row and column in order to access desired
data. There are two common mappings as employed in this work and other predictable
memory controllers: interleaved banks and private banks. Under interleaved banks,
each request accesses all banks or a subset of consecutive banks. The amount of data
transferred in one request is thus BL · WBU S · B I · BC , where B I is the number of
interleaved banks and BC is the number of times each bank is accessed. For example,
with 4 banks interleaved, burst length of 8, BC = 1 and data bus of 64 bits, the
amount of data transferred is 256 bytes. Although this mapping allows each requestor
to efficiently utilize multiple banks in parallel, each requestor also shares banks with
every other requestors. Therefore, requestors can cause mutual interference by closing
each other’s rows. This mapping is typically used in systems where the data bus is
small such as 16 or 32 bits in order to access multiple banks so that the controller can
transfer the size of a cache block efficiently.

Under private banks, each requestor is assigned its own bank or set of banks.
Therefore, the state of row buffers accessed by one requestor cannot be influenced
by other requestors. A separate set of banks can be reserved for shared data that can
be concurrently accessed by multiple requestors. Detailed discussion of shared banks
will be described in Sect. 7. Under private banks, each request targets a single bank,
hence the amount of data transferred is BL · WBU S . The downside to this mapping
is that bank parallelism cannot be exploited by a single requestor. In order to transfer
the same amount of data as in interleaved banks, multiple accesses to the same bank
are required. However, for devices with large data bus such as 64 bits or larger, no
interleaving is required in order to transfer data at the granularity of a typical cache
block size in COTS systems, which is usually 64 bytes. Therefore, in such systems,
interleaving banks actually transfers more data than needed, thus resulting in wasted
data bus cycles. Note that if the hardware does not natively support private bank
partitioning, then OS-level virtual memory mapping or other software techniques are
needed to support this scheme (Yun et al. 2014).

3 Related work

Several predictable memory controllers have been proposed in the literature (Paolieri
et al. 2013; Akesson et al. 2007; Shah et al. 2012; Goossens et al. 2013; Reineke et
al. 2011). The most closely related work is that of Paolieri et al. (2013) and Akesson et
al. (2007). The analyzable memory controller (AMC) (Paolieri et al. 2013) provides
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an upper bound latency for memory requests in a multi-core system by utilizing a
round-robin arbiter. Predator (Akesson et al. 2007) uses credit-controlled static-priority
(CCSP) arbitration (Akesson et al. 2008), which assigns priority to requests in order to
guarantee minimum bandwidth and provide a bounded latency. As argued in Paolieri et
al. (2013), the round-robin arbitration used by AMC is better suited for hard real-time
applications, while CCSP arbitration is intended for streaming or multimedia real-
time applications. Both controllers employ interleaved banks mapping. Since under
interleaved banks, there is no guarantee that rows opened by one requestors will not
be closed by another requestor, both controllers also use close row policy, making the
access latency of each request predictable.

In contrast, our previous work in Wu et al. (2013) first proposed to employ private
bank mapping with open row policy. By using a private bank scheme, we eliminate
row interferences from other requestors since each requestor can only access their own
banks. Therefore, each hard real-time task can be analyzed in isolation (Bourgade
et al. 2008) to determine the number of open and close requests it produces. As a
possible downside, this reduces the total memory available to each requestor compared
to interleaving, and might require increasing the DRAM size; however, such cost is
typically significantly smaller than the cost of enlarging the channel size by adding
more channels. Also, the approach cannot scale past a number of requestors equal to
the number of banks in the systems; however, 4 ranks systems have up to 32 total
banks, and we envision that systems having a larger number of requestors would
require multiple memory controllers to satisfy bandwidth requirements. As proved by
the worst case latency analysis introduced in Wu et al. (2013), this approach leads to
better latency bounds compared to AMC and Predator because of two main reasons:
first the latency of open requests is much shorter than the one of close requests in DDR3
devices. Second, interleaved bank mapping is only suitable for memory devices with
small data bus in order to transfer data at granularity of cache block size, which is
typically 64 bytes on most modern platforms. However, many data buses are large and
can transfer 64 bytes data chunks without interleaving any bank. Our previous work
was limited to only DRAM devices with one rank and did not consider latency for
accessing shared data. This article extends the analysis to account for multiple ranks
and shared data. Note that for a single rank, the analysis result in this article is the same
as our previous work. Furthermore, simulation results are also included to compare
against theoretical worst case latency bounds.

Goossens et al. (2013) have proposed a mix-row policy memory controller. Their
approach is based on leaving a row open for a fixed time window to take advantage
of row hits. However, this time window is relatively small compared to an open row
policy. In the worst case their approach is the same as close row policy if no assumptions
can be made about the exact time at which requests arrive at the memory controller,
which we argue is the case for non-trivial programs on modern processors. Reineke
et al. (2011) propose a memory controller that uses private bank mapping; however,
their approach still uses the close row policy along with TDMA scheduling. Their
work is part of a larger effort to develop PTARM (Liu et al. 2010), a precision-timed
(PRET, Edwards and Lee 2011; Bui et al. 2011) architecture. The memory controller
is not compatible with a standard, COTS, cache-based architecture. To the best of our
knowledge, at the time of submission our proposed controller was the first to utilize
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both open row policy and private bank scheme to provide improved worst case memory
latency bounds to hard real-time tasks in multi-requestor systems.

The work in Wang (2005) proposed a rank hopping algorithm to maximize DRAM
bandwidth by scheduling a read group (or write group) to the same rank to leverage
bank parallelism until no more banks can be activated due to timing constraints. At that
point, another group of CAS commands are scheduled for another rank. This way, they
amortize the rank to rank switching time across a group of CAS commands. However,
this scheduling policy inherently re-orders requests and it is not suitable for hard real
time systems that require guaranteed latency bounds. The work in Kim et al. (2012)
uses rank scheduling to reduce DRAM power usage. The tF AW constraint that limits
the number of banks that can be activated in order to limit the amount of current drawn
to the device to prevent over heating problems. Therefore, their work aims to improve
power usage by minimizing the number of state transitions from low power to active
state by smartly scheduling ranks. In summary, rank scheduling and optimizations
have been applied to non real-time systems, but the predictable controllers discussed
above do not take ranks into account.

Since this manuscript has first been submitted, several new predictable memory
controllers have been proposed in the literature which attempt to reduce memory
latency either by dynamically scheduling commands or by employing rank switching.
Li et al. (2015) proposed a dynamically scheduled controller based on close row
policy. The controller can dynamically accommodate requests of different sizes by
interleaving over varying number of banks. It also reduces average case latency by
keeping track of the bank state at run time and issuing commands as soon as possible,
rather than according to a static command sequence. The work by Hassan et al. (2015)
similarly allows for varying request size. It builds upon Goossens et al. (2013) by
using a mix-row policy where large requests employ open page to more efficiently
transfer data from main memory. Furthermore, the authors construct an optimized
work-conserving TDMA schedule that allows the system designer to specify different
latency and bandwidth requirements for each requestor.

Three recent papers Jalle et al. (2014), Kim et al. (2015), Valsan and Yun (2015)
have proposed mixed-criticality controllers to allow guaranteed latency bounds for
critical, hard real-time requestors while optimizing average throughput for non-critical
requestors. In all such proposals, non-critical requestors are scheduled according to
a First-Ready, First-Come-First-Serve (FR-FCFS) arbitration which is common in
COTS controllers. On the other hand, the critical requestors are Round Robin arbitrated
with open page policy and have higher priority than the non-critical requestors.

The authors Ecco et al. (2014) and Krishnapillai et al. (2014) employed rank switch-
ing to avoid the long read to write and write to read timing constraints. Ecco et
al. (2014) proposed a close page controller based on TDMA arbitration. Each requestor
is assigned a private bank partition, and the arbitration switches between requestors
assigned to banks in different ranks. By carefully scheduling the static command
sequences, the controller can significantly reduce the size of each TDMA slot com-
pared to previous static controllers when handling small size requests that do not
require interleaving. Krishnapillai et al. (2014) designed a Rank switching, open row
memory controller (ROC). Similarly to Ecco et al. (2014), ROC employs private bank
assignments and alternates between requestors assigned to different ranks, but com-
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Fig. 4 Memory controller

mands are dynamically scheduled at run-time rather than based on static, pre-computed
sequences.

Finally, the authors Ecco and Ernst (2015) build upon our work in Wu et al. (2013)
by proposing an open page controller with predictable request reordering. The key
intuition is that a bounded reordering of load and store requests can be beneficial:
while a request under analysis can be delayed by a larger number of other requests
compared to round robin arbitration, each interfering request has smaller latency since
the number of read to write and write to read switches is minimized.

4 Memory controller

In this section, the arbitration rules of the memory controller are formalized in order to
derive worst case latency analysis. The structure and building blocks of the proposed
memory controller are similar to other existing controllers, albeit command arbitra-
tion is modified to ensure that requestors are treated fairly. In particular, memory
re-ordering features typically employed in COTS memory controllers are eliminated
since they could lead to long and possibly unbounded latency as will be shown by the
end of this section. Therefore, we argue that the proposed memory controller would
not require a large implementation effort and the rest of the discussion will focus on
the analysis of worst case memory bound rather than implementation details.

A possible structure to implement the proposed rules is shown in Fig. 4.3 There
are private command buffers for each requestor in the system to store the memory
commands generated by the front end as discussed in Sect. 2. Because the controller
employs a private banks scheme, the front end can convert requests of each requestor
independently and in parallel. Therefore, we exclusively focus on the analysis of the
back end delay, assuming that the command generators in the front end take a constant
time to convert a request into the corresponding commands. In addition, there is a
global arbitration FIFO queue where memory commands from the private command
buffers are enqueued. In this implementation, arbitration is carried out in two steps.
First, a set of per-requestor arbiters are used to determine the state of the commands at

3 Note that our described latency analysis depends on the arbitration rules only, and not on the detailed
implementation of the controller.
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the head of each command buffer, and insert them into the global FIFO when required;
note that since the per-requestor arbiters operate in parallel, we assume that commands
from multiple buffers can be inserted into the FIFO queue in the same clock cycle.
Then, a global command arbiter determines the state of the commands in the global
arbitration queue and issues the commands on the command bus without violating
timing constraints; an acknowledgment signal is propagated back to the per-requestor
arbiter once a command of that arbiter is sent out. The global command arbiter also
generates all required refresh commands.

The detailed arbitration rules of the controller are outlined below.

1. Each requestor can only insert one command from its private command buffer into
the FIFO and must wait until that command is serviced before inserting another
command. PRE and ACT commands are considered serviced once they are issued
on the command bus. CAS command is considered serviced when the associated
data has finished being transmitted on the data bus (either tRL +tBU S or tW L +tBU S

cycles after transmitting the CAS on the command bus). Hence, a requestor is not
allowed to insert another CAS command in the FIFO until the data of its previous
CAS command has been transmitted.

2. A requestor can enqueue a command into the FIFO only if all timing constraints
that are caused by previous commands of the same requestor are satisfied. This
implies that the command can be issued immediately if no other requestors are in
the system.

3. At the start of each memory cycle, the controller determines which commands
in the FIFO can be issued and which are blocked. If there is any non-blocked
command, it then issues the first such command in FIFO order. An exception is
made for CAS command as described in the next rule.

4. For CAS commands in the FIFO, if one CAS command is blocked due to timing
constraints caused by other requestors, then all CAS commands after the blocked
CAS in the FIFO will also be blocked. In other words, re-ordering of CAS com-
mands is not allowed.

5. Every refresh period tRE F I , the global command arbiter stops servicing commands
from the global FIFO queue until it finishes issuing a static refresh command
sequence. The refresh sequence performs the following operations: (1) it closes
all open rows; (2) it issues a REF command; (3) it re-opens all previously open
rows.

It is clear from Rule-1 that the size of the FIFO queue is equal to the number of
requestors. Note that once a requestor is serviced, the next command from the same
requestor will go to the back of the FIFO. Intuitively, this implies that each requestor
can be delayed by at most one command for every other requestor; it will be formally
proved in Sect. 5. Therefore, this arbitration is very similar to a round robin arbiter, as
also employed in AMC (Paolieri et al. 2013). Note that CAS commands are considered
serviced only when the associated data is transmitted to prevent a requestor from being
delayed by two, rather than one, data transfers of another requestor.

To understand Rule-2, assume a requestor is performing a close request consisting
of ACT and CAS commands. The ACT command is enqueued and after some time it
is serviced. Due to the tRC D timing constraint (please refer to Figs. 2 or 3), the CAS
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(b)

(a)

Fig. 5 Importance of Rule-4

command cannot be enqueued immediately; the private buffer must hold the CAS until
tRC D cycles have expired before putting the CAS in the FIFO. This rule ensures that
a requestor is not delayed due to timing constraints of a different requestor, as it will
become more clear in the following discussion of Rule-4.

Finally, without Rule-4 the latency would be unbounded. Figure 5a shows an exam-
ple command schedule where Rule-4 does not apply. In the figure, the state of the FIFO
at the initial time t = 0 is shown as the rectangular box. Let us consider the chrono-
logical order of events. (1) A write command from Requestor 1 (R1) is at the front of
FIFO and it is serviced. (2) A read command (R2) cannot be serviced until t = 16 due
to tW T R timing constraint (crossed box in figure). (3) The controller then services the
next write command (R3) in the FIFO queue at t = 4 following Rule-3. Due to tW T R

constraint, the earliest time to service read command is now pushed back from t = 16
to t = 20. (4) Assume that another write command from Requestor 1 is enqueued at
t = 17. The controller then services this command, effectively pushing the read com-
mand back even further to t = 33. Following the example, it is clear that if Requestors
1 and 3 have a long list of write commands waiting to be enqueued, the read command
of Requestor 2 would be pushed back indefinitely and the worst case latency would
be unbounded if the controller does not limit the number of re-ordering. By enforcing
Rule-4, latency becomes bounded because all CAS after read (R2) would be blocked
as shown in Fig. 5b.

Note that no additional rule is required to handle the data bus. Once a CAS command
(read or write) is issued on the command bus, the data bus is essentially reserved for
that CAS command for a duration of tBU S starting from tRL or tW L cycles after the
CAS is issued. Hence, to avoid data bus conflicts, the tBU S timing constraint is used
to prevent consecutive CAS commands to be issued before tBU S cycles. This would
be implemented as part of the logic that determines which commands in the FIFO can
be issued.
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Fig. 6 Worst case latency decomposition

5 Worst case per-request latency

In this section, the worst case latency for a single memory request of a requestor
under analysis is derived. In particular, the back end worst case latency is measured
as the time when the first command of a request arrives at the front of the private
per-requestor command buffer4 until its data finishes transmitting. Then in Sect. 6, the
cumulative worst case latency over all requests generated by a task running on a core is
analyzed. In this section, we ignore the effects of refresh commands, since accounting
for refresh on a per-request basis is too pessimistic. Refresh delay is incorporated in
the analysis in Sect. 6. We consider a system with R total ranks and rank j is assigned
M j requestors, where 1 ≤ j ≤ R. The total number of requestors in the system is
M = ∑R

j=1 M j and one of these requestors is executing the task under analysis.

Let t Req be the worst case latency for a given memory request of the task under
analysis. To simplify the analysis, the request latency is decomposed into two parts,
tAC and tC D as shown in Fig. 6. tAC (Arrival-to-CAS) is the worst case interval between
the arrival of a request at the front of command buffer and the enqueuing of its corre-
sponding CAS command into the FIFO. tC D (CAS-to-Data) is the worst case interval
between the enqueuing of CAS and the end of data transfer. In all figures in this sec-
tion, a solid vertical arrow represents the time instant at which a request arrives at the
front of the buffer. A dashed vertical arrow represents the time instant at which a com-
mand is enqueued into the FIFO; the specific command is denoted above the arrow. A
grey square box denotes interfering requestors while a white box denotes task under
analysis. Note that for a close request, tAC includes the latency required to process
a PRE and ACT command, as explained in Sect. 2. By decomposing, the latency for
tAC and tC D can now be computed separately, greatly simplifying the analysis; t Req

is then computed as the sum of the two components. The downside is that the analysis
is pessimistic, since it assumes than an interfering requestor could cause maximum
delay on each individual command of the requestor under analysis, while this might
not be possible in practice.

5.1 Arrival-to-CAS

We first show how to compute tAC . Since the set of memory commands differ between
open and close requests, we will consider each case separately. Furthermore, since there

4 For short, it will be referred to as private buffer or command buffer or simply buffer; hence, we will refer
to this event as the request arriving at the buffer.
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are timing constraints between commands of requests targeting the same bank, which
depend on the type of the requests, we need to consider the sequence of requests pro-
duced by the requestor under analysis. To simplify the analysis, we make no assumption
on the specific bank accessed by requests of the requestor under analysis, i.e., in the
worst case, the requestor under analysis can target a single private bank. This allows
us to compute tAC based on the type of the previous request of the requestor under
analysis only, rather than all previous requests.

5.1.1 Open request

In this case, the memory request under analysis is a single CAS command because
the row is already open. Therefore, tAC only includes the latency of timing constraints
caused by previous requests of the core under analysis (arbitration Rule-2 in Sect. 4).
The earliest time a request can arrive at the front of the buffer is after the previous
request has finished transferring data (note that a CAS is only removed from the front
of the command buffer once the data is transmitted as per arbitration Rule-1). If the
previous and current request are of the same type (i.e., both are load or store), then tAC

is zero because there are no timing constraints between requests of the same type. If
the previous and current requests are of different types, there are two cases as shown in
Fig. 7. (1) If the previous request is a store, then the tW T R constraint comes into effect.
(2) If the previous request is a load, then tRT W comes into effect. In both cases, it is
easy to see that the worst case tAC occurs when the current request arrives as soon as
possible, i.e., immediately after the data of the previous request, since this maximizes
the latency due to the timing constraint caused by the previous request. Also note
that tRT W applies from the time when the previous read command is issued, which is
tRL + tBU S cycles before the current request arrives. Therefore, Eq. (1) captures the
tAC latency for an open request, where cur denotes the type of the current request and
prev denotes the type of the previous one.

t Open
AC =

⎧
⎪⎨

⎪⎩

tW T R if cur − load, prev − store;
max{tRT W − tRL − tBU S, 0} if cur − store, prev − load;
0 otherwise.

(1)

Fig. 7 Arrival-to-CAS for open
request
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Fig. 8 Arrival-to-CAS for close request

Table 2 Timing parameter
definition tD P End of previous DATA to PRE enqueued

tI P Interference delay for PRE

tD A End of previous DATA to ACT enqueued

tI A Interference delay for ACT

5.1.2 Close request

The analysis is more involved for close requests due to the presence of PRE and ACT
commands. Therefore, tAC is decomposed into smaller parts as shown in Fig. 8. Each
part is either a JEDEC timing constraint shown in Table 1 or a parameter that will
be computed, as shown in Table 2. tD P and tD A determine the time at which a PRE
and ACT command can be enqueued in the global FIFO queue, respectively, and thus
(partially) depend on timing constraints caused by the previous request of the task under
analysis. tI P and tI A represent the worst case delay between inserting a command in
the FIFO queue and when that command is issued, and thus capture interference caused
by other requestors. Similarly to the open request case, the worst case for tAC occurs
when the current request arrives immediately after the previous request has finished
transferring data. In other words, the command buffer is backlogged with outstanding
commands.

tD P depends on the following timing constraints: (1) tR AS if the previous request
was a close request; (2) tRT P if the previous request was a load; (3) tW R if the previous
request was a store; please refer to Fig. 2 and Table 1 for a detailed illustration of these
constraints. Equation (2) then summarizes the value of tD P . Similarly to Eq. (1), for
terms containing tR AS and tRT P , they need to subtract the time interval between issuing
the relevant command of the previous request and the arrival of the current request.

tD P =
{

max{(tRT P − tRL − tBU S), Q · (tR AS − tprev), 0} if prev − load;
max{tW R, Q · (tR AS − tprev), 0} if prev − store,

(2)

where

Q =
{

1 if prev − close;
0, if prev − open.

tprev =
{

tRC D + tRL + tBU S if prev − load;
tRC D + tW L + tBU S if prev − store.

Next, tI P is considered. In the worst case, when the PRE command of the core
under analysis is enqueued into the FIFO, there can be a maximum of M −1 preceding
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commands in the FIFO due to arbitration Rule-1. Each command can only delay PRE
for at most one cycle due to contention on the command bus; there are no other
interfering constraints between PRE and commands of other requestors, since they
must target different banks or ranks. In addition, any command enqueued after the
PRE would not affect it due to Rule-3. Note that the cycle it takes to issue the PRE
on the command bus is not included in tI P since it is already included in the tR P

constraint. Therefore, the maximum delay suffered by the PRE command is:

tI P = M − 1. (3)

Let us consider tD A next. If the previous request was a close request, tD A depends
on the tRC timing constraint. In addition, once PRE is serviced, the command buffer
must wait for the tR P timing constraint to expire before ACT can be enqueued. Hence,
tD A must be at least equal to the sum of tD P , tI P , and tR P . Therefore, tD A is obtained
as the maximum of these two terms in Eq. (4), where again tprev accounts for the time
at which the relevant command of the previous request is issued.

tD A = max{(tD P + tI P + tR P), Q(tRC − tprev)} (4)

Next, tI A is analyzed. We will show that the ACT command of the core under
analysis suffers maximal delay in the scenario shown in Fig. 9 (the ACT under analysis
is shown as the white square box). Note that two successive ACT commands within
the same rank must be separated by at least tR R D cycles. Furthermore, within the same
rank, no more than four ACT commands can be issued in any time window of length
tF AW , which is larger than 4 · tR R D for all devices. There are no constraints between
ACT and commands of requestors from other ranks. Assume the rank that contains
the core under analysis is rank r . The worst case is produced when all Mr − 1 other
requestors from rank r enqueue an ACT command at the same time t0 as the core
under analysis, which is placed last in the FIFO; furthermore, four ACT commands
of rank r have been completed immediately before t0; this forces the first ACT issued
after t0 to wait for tF AW − 4 · tR R D before it can be issued. In addition, all requestors
from other ranks can enqueue a command before the core under analysis in the FIFO
(not shown in Fig. 9) and hence contribute one cycle of delay on the command bus.
Thus, the value of tI A is computed as:

Fig. 9 Interference delay for ACT command
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tI A = (tF AW − 4 · tR R D) +
⌊

Mr −1
4

⌋
· tF AW +

+(
(Mr − 1) mod 4

) · tR R D + (M − Mr )
(5)

Lemma 1 Assuming that the rank under analysis is rank r , the worst case for tI A is
computed by Eq. (5).

Proof Let t0 be the time at which the ACT command of the core under analysis (ACT
under analysis) is enqueued in the global arbitration FIFO queue. The worst case
interference on the core under analysis is produced when at time t0 there are Mr − 1
other ACT commands of rank r enqueued before the ACT under analysis. First note
that commands enqueued after the ACT under analysis cannot delay it; if the ACT
under analysis is blocked by the tR R D or tF AW timing constraint, then any subsequent
ACT command of rank r in the FIFO would also be blocked by the same constraint.
PRE or CAS commands of rank r or any commands from other ranks enqueued after
the ACT under analysis can execute before it according to arbitration Rule-3 if the
ACT under analysis is blocked; but they cannot delay it because those requestors
access different banks or ranks, and there are no timing constraints between ACT and
PRE or CAS of a different bank or commands of other ranks. Commands of other
ranks enqueued before ACT under analysis can contribute a delay of one cycle each
due to command bus contention and there are M − Mr such requestors from other
ranks.

For requestors in rank r , each ACT of another requestor enqueued before the ACT
under analysis can contribute to its latency for at least a factor tR R D , which is larger
than one clock cycle on all devices. Now assume by contradiction that a requestor
has a PRE or CAS command enqueued before the ACT under analysis at time t0.
Since again there are no timing constraints between such commands, the PRE or CAS
command can only delay the ACT under analysis for one clock cycle due to command
bus contention. Furthermore, after the PRE or CAS command is issued, any further
command of that requestor would be enqueued after the ACT under analysis. Hence,
the requestor of rank r would cause a total delay of one cycle, which is less than tR R D .
Next, we will show that all requestors of rank r enqueueing their ACT command at
the same time t0 is the worst case pattern. Requestors enqueueing an ACT after t0
do not cause interference as already shown. If a requestor enqueues an ACT at time
t0 −� with � < tR R D , the overall latency is reduced by � since the requestor cannot
enqueue another ACT before t0 due to arbitration Rule-2.

To conclude the proof, it remains to note that one or more requestors of rank r
could instead issue an ACT at or before t0 − tR R D and then enqueue another ACT at
t0 before the ACT under analysis. Due to the tF AW constraint, ACT commands issued
after t0 could then suffer additional delay. Unfortunately, we do not know exactly how
many ACT commands should be issued at or before t0 − tR R D to produce the worst
case. Hence, in the rest of the proof, we first use the variable x to denote the number
of such commands, and then derive the delay based on the value of x ; note that since
tF AW operates on 4 consecutive commands, we only need to consider up to 4 previous
ACT commands. Finally, we will obtain tI A by maximizing the delay expression over
the value of x .
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In details, assume that x ∈ [1, 4] ACT commands issued before t0 − tR R D delay
the (4 − x + 1)th ACT command issued after t0; as an example in Fig. 9, x = 4 and
given 4−x +1 = 1, the 1st ACT command after t0 is delayed. The latency of the ACT
under analysis is maximized when the x ACT commands are issued as late as possible,
causing maximum delay to the ACT commands after t0; therefore, in the worst case,
assume that the x ACT commands are issued starting at t0 − x · tR R D . Then, the total
latency of the ACT under analysis is obtained as:

⌊ x + Mr − 1

4

⌋
· tF AW + (

(x + Mr − 1) mod 4
) · tR R D − x · tR R D + (M − Mr ).

(6)

Note that since 4·tR R D < tF AW for all memory devices, Eq. (6) is computed assuming
that a delay of tF AW is incurred for every 4 CAS; the remaining CAS commands add a
latency of tR R D each. The term M−Mr accounts for the one cycle delay caused by each
requestor from another rank, and the term x · tR R D accounts for the fact that the x ACT
commands start at t0 − x · tR R D , while the command under analysis is enqueued at t0.

We next show how to maximize Eq. (6) over x ∈ [1, 4]. Since the equation contains a
floor and module term, we perform an algebraic simplification to evaluate the resulting
delay. In details, let x̄ ∈ [1, 4] be the value such that

(
(x̄ + Mr − 1) mod 4

) = 0; note
that x̄ is well defined, since there must be a single value in [1, 4] that makes the module
equal to 0. Furthermore, let x = x̄ + y; note that since both x and x̄ assume values in
[1, 4], y necessarily takes values in [−3, 3]. We can then simplify Eq. (6) by substitut-
ing x̄ + y for x in the floor and module terms and evaluating the expression for the case
where y ≥ 0 and the case where y < 0. In particular, if y ≥ 0, Eq. (6) is equivalent to:

(⌊ Mr − 1

4

⌋
+ 1

)
· tF AW + y · tR R D − (

x̄ + y
) · tR R D + (M − Mr )

=
⌊ Mr − 1

4

⌋
· tF AW + tF AW − x̄ · tR R D + (M − Mr ). (7)

If instead y < 0, Eq. (6) is equivalent to:

⌊ Mr − 1

4

⌋
· tF AW + (4 + y) · tR R D − (

x̄ + y
) · tR R D + (M − Mr )

=
⌊ Mr − 1

4

⌋
· tF AW + 4 · tR R D − x̄ · tR R D + (M − Mr ). (8)

Since again 4 · tR R D < tF AW , it follows that the latency in Eq. (7) is larger than the
latency in Eq. (8). Since furthermore, Eq. (7) does not depend on y, one can select
any value x ≥ x̄ ; in particular, substituting x = 4 in Eq. (6) results in Eq. (5), thus
proving the lemma. ��

Once the ACT command is serviced, the CAS can be inserted after tRC D cycles,
leading to a total tAC latency for a close request of tD A + tI A + tRC D . Therefore, the
following lemma is obtained:
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Lemma 2 The worst case arrival-to-CAS latency for a close request can be computed
as:

tClose
AC = tD A + tI A + tRC D. (9)

Proof As already shown, the computed tD A represents a worst case bound on the
latency between the arrival of the request under analysis and the time at which its
associated ACT command is enqueued in the global FIFO arbitration queue. Similarly,
tI A represents a worst case bound on the latency between enqueuing the ACT command
and issuing it. Since furthermore, a CAS command can only be enqueued tRC D clock
cycles after issuing the ACT due to arbitration Rule-2, the lemma is shown to be
correct. ��

5.2 CAS-to-Data

We will now discuss the CAS-to-Data part of the single request latency. Due to the
complexities, in this section we provide the key intuitions and results of our analysis;
detailed proofs and tC D derivation is then discussed in Appendix.

Let t0 be the time at which the CAS command of the core under analysis (CAS
under analysis) is enqueued into the arbitration FIFO. Assume all other requestors also
have a CAS command in the FIFO and the CAS under analysis is placed last in the
FIFO. Then the CAS-to-Data delay, tC D , can be decomposed into two parts as shown
in Fig. 10: (1) the time from t0 until the data of the first CAS command is transmitted;
this is called tF I RST and it depends on whether the first CAS command is a read or
write. (2) The time from the end of data of the first CAS until all remaining CAS
finish transmitting data, including the CAS under analysis. This is called tOT H E R .
Therefore, the CAS-to-Data delay is computed as the sum of tF I RST and tOT H E R .

Lemma 3 Assuming all requestors insert a CAS command into the FIFO at t0, then
the worst case latency for tF I RST is computed according to Eq. (10).

tF I RST =
{

FR = tW T R + tRL + tBU S if first CAS is read;

FW = tW L + tBU S if first CAS is write.
(10)

Fig. 10 Decomposition of CAS to data latency
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Notice that beginning with a read command as the first CAS after t0 leads to the
maximum tF I RST since tRL ≥ tW L for all devices and tW T R is always positive, hence
FR ≥ FW . However, as we will discuss shortly, to maximize the overall delay for
tC D , it might not be desirable to always begin with a read after t0 depending on the
calculation for tOT H E R .

Next, let us examine the delay from end of data of a CAS command to the end of
data of the next CAS command. For transition between two CAS commands of same
rank, the delay depends on the command order (i.e., write-to-read, read-to-write, read-
to-read, and write-to-write). For transition between two CAS commands of different
ranks, the delay only depends on tRT R .

Lemma 4 Assuming the FIFO is backlogged with only CAS commands, the delay
from the end of data of one CAS command to the end of data of next CAS command
is:

DW R = tW T R + tRL + tBU S if write-to-read of same rank;
DRW = tRT W + tW L − tRL if read-to-write of same rank;
DRN K = tRT R + tBU S if rank-to-rank transition;
tBU S otherwise.

(11)

Note that DW R is always greater than the other cases for all devices. Between DRW

and DRN K , the greater of the two depends on the specific device parameters but both
are greater than tBU S for all devices. Since DW R is always greater than DRW or DRN K ,
it makes intuitive sense to maximize the number of write-to-read transitions within
the same rank to maximize the worst case latency.

However, since tC D has two parts, tF I RST and tOT H E R , both parts must be maxi-
mized for the worst case. tF I RST is maximized by beginning with a read while tOT H E R

is maximized by the number of write-to-read transitions. However, there is an inter-
dependency between the two parts and maximizing one may lower the other. For
example, consider the case where the CAS under analysis is a read and M j is even for

all the ranks. In this case, all ranks have exactly
M j
2 number of write-to-read transitions

and no requestor is left out with a single read or write as shown in Fig. 11a. Therefore,
it is not immediately clear whether to break up a group of write-to-read transitions to
put a read command as the first CAS or to keep the write-to-read and just begin with a
write command instead. On the other hand, Fig. 11b shows the case where one of the
ranks has an extra read. In this case, one can begin with a read to maximize tF I RST

while still maintaining the maximum number of write-to-read groups.
To solve this complexity, in the Appendix we show that the problem of computing

an upper bound to tC D can be formulated as an ILP problem. The ILP computes
the worst case latency based on the type of the first CAS and the maximum number
of transitions (write-to-read, read-to-write and rank-to-rank) that can interfere with
the CAS under analysis. The result in then proven correct in Lemma 7 provided in
Appendix.

Combining the results of Lemmas 2 and 7 then trivially yields the main theorem:
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(b)

(a)

Fig. 11 Trade off between maximizing tF I RST and tOT H E R

Theorem 1 Assuming that the type of the previous request of the task under analysis
is known, the worst case latency of the current request can be computed as:

t Req = tAC + tC D, (12)

where tAC is derived according to either Eq. (1) for an open request or Eq. (9) for a
close request, and tC D is derived according to Eq. (37) in Appendix.

Proof As already shown, the tAC value is computed according to either Eq. (1) or
Eq. (9) and it is an upper bound to the arrival-to-CAS latency. The tC D value computed
according to Eq. (37) is an upper bound to the CAS-to-Data latency according to
Lemma 7. Hence, the sum of the two upper bounds is also an upper bound to the
overall latency t Req of the current request from its arrival at the front of requestor
command buffer to finishing transmitting its data. ��

6 Worst case cumulative latency

This section shows how to use the results of previous section to compute the cumulative
latency over all requests generated by the task under analysis. Let us assume that the
requestor executing the task under analysis is a fully timing compositional core as
described in Wilhelm et al. (2009) (example: ARM7). This implies that the core is
in-order and it will stall on every memory request including store requests. Therefore,
the task under analysis can not have more than one request at once in the request queue
of the memory controller, and the cumulative latency over all requests performed by
the task can simply be computed as the sum of the latencies of individual requests.5 If
modern out of order cores are considered, then the latency of store requests might not
need to be considered because the architecture could effectively hide store latency. In
addition, multiple outstanding requests could simultaneously be in the request queue of
the memory controller. Therefore, the core and memory controller behaviours should
be jointly analyzed to derive a safe worst case upper bound. However, the focus of this

5 Note that the core might be stalled while waiting for other shared physical resources, such as caches and
interconnect. Since this work focuses on access latency in the memory controller only, in the rest of the
session we assume that all other delays are already incorporated in the computation time of the task.
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Table 3 Notation for request
types

Notation Description

NO L Number of open load

NC L Number of close load

NO S Number of open store

NC S Number of close store

paper is not on modeling cores; furthermore, note that the analysis in Sect. 5 can be
applied regardless of the type of cores. Other requestors in the system can be out of
order cores or DMAs. While these requestors could have more than one request in their
request queues, this does not affect the analysis since each requestor can still enqueue
only one command at a time in the global FIFO queue. No further assumptions are
made on the behaviour of other requestors. For simplicity, let us assume that the task
under analysis runs non-preemptively on its assigned core; however, the analysis could
be easily extended if the maximum number of preemptions is known.

To derive a latency bound for the task under analysis, characterization of its memory
requests is needed. Specifically, the analysis needs: (1) the number of each type of
request, as summarized in Table 3; (2) and the order in which requests of different
types are generated. There are two general ways of obtaining such a characterization.
One way is by measurement, running the task either on the real hardware platform or
in an architectural simulator while recording a trace of memory requests. This method
has the benefit of providing us with both the number and the order of memory requests.
However, one can never be confident that the obtained trace corresponds to the worst
case. Alternatively, a static analysis tool (Bourgade et al. 2008) can be employed to
obtain safe upper bounds on the number of each type of requests. However, to be the
best of our knowledge, no available static analysis tool can provide an exact requests
order, since in general, the order is dependent on input values and code path, initial
cache state, etc. Since the analysis in Sect. 5 depends on the order of requests, this
section shows how to derive a safe worst case requests order given the number of
each type of requests. Regardless of which method is used, note that the number of
open/close and load/store requests depend only on the task itself since private bank
mapping is used to eliminate row misses caused by other requestors.

If the request order is known, then the cumulative latency can be obtained as the
sum of the latency for each individual request, since the previous request is known
based on the order. If the request order is not known, then a worst case pattern needs
to be derived. It is clear from the analysis in Sect. 5 that tAC depends on the order of
requests for the core under analysis while tC D does not. This allows us to decompose
the cumulative latency t T ask into two parts similar to before: t T ask

C D , the sum of the tC D

portion of all requests, which is independent of the order; and t T ask
AC , the sum of the

tAC portion of all requests, for which a worst case request pattern is needed. t T ask
C D is

computed according to Eq. (13), where t Read
C D is the tC D delay when the CAS under

analysis is read while tWrite
C D is for a write. Note the difference between the two is

captured in Eqs. (30) and (31) in Appendix.

t T ask
C D = (NO L + NC L) · t Read

C D + (NO S + NC S) · tWrite
C D . (13)
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Table 4 Arrival-to-CAS latency summary

Case Current request Previous request tAC (ns)

1 Close (load or store) (Close or open) store tdev + �tS
2 Close (load or store) Close load tdev + �tL
3 Close (load or store) Open load tdev

4 Open load (Close or open) store tW T R

5 All other request 0

Now let us consider the different possible cases for tAC . Note that tAC , as computed
in Eqs. (1) and (9), depends on both the previous request of the task under analysis and
the specific values of timing constraints, which vary based on the DDR device. Since
the current request can be either open or close and either a load or store (4 cases), and
similarly for the previous request, there are 16 different cases; however, in practice
the value of tAC is the same over several different cases. To determine the actual
number of different cases that must be considered, we conducted a comprehensive
numeric evaluation of tAC for all DDR3 devices defined in JEDEC; complete results
are provided in Wu and Pellizzoni (2015). Based on the obtained results, there are
only five different values of tAC for any given DDR device that must be considered;
these are summarized as the five cases in Table 4. tdev , �tS and �tL are positive
terms depending on the timing constraints of the specific DDR device; for ease of
comparison, tdev is defined as the tAC latency of a close request preceded by an open
load (i.e., Case-3), while �tS and �tL are the additional delays compared to Case-3 for
Case-1 and Case-2, respectively. Note that tdev depends on the number of requestors
M and Mr , while all other parameters in the table do not. Also, for all devices and
numbers of requestors, tdev is significantly larger than timing constraint tW T R . Finally,
�tS is larger than �tL for all devices, and also �tS − �tL is always larger than
tW T R .

Notice three observations: first, open stores incur no tAC latency. This is because
tRT W ≤ tRL + tBU S for all devices, thus Eq. (1) always evaluates to zero for open
stores. Second, both open load and close load/store requests suffer higher latency
when preceded by a store request (Case-1 and Case-4 respectively). When a close
request is preceded by a load request instead, the latency is maximized when the
preceding request is a close load rather than an open load (Case-2 rather than Case-3).
Therefore, intuitively a worst case pattern can be constructed by grouping all close
requests together, followed by open loads, and then “distributing” store requests so
that each store precedes either an open load or a close load/store request: in the first
case, the latency of the open load request is increased by tW T R , while in the second
case, the latency of the close request is increased by �tS − �tL , i.e., the difference
between Case-1 and Case-2. Since the value of �tS −�tL is always higher than tW T R

for all devices, the latter case yields the actual worst case. One can then obtain a bound
to the cumulative tAC latency as follows:

t T ask
AC = (NC L + NC S) · (tdev + �tL) + (�tS − �tL) · x + tW T R · y, (14)
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where

x = min(NC L + NC S, NO S + NC S + 1), (15)

y = min(NO L , NO S + NC S + 1 − x). (16)

Lemma 5 Eq. (14) computes a valid upper bound to tT ask
AC .

Proof Let x represent the number of stores that precede a close request and let y
represent the number of stores that precede an open load. By definition, y is at most
equal to the total number of open loads. Similarly, x is at most equal to the total number
of close requests. Finally, notice that the total number of stores x + y is at most equal
to NO S + NC S + 1; the extra store is due to the fact that we do not know the state
of the DRAM before the start of the task, hence we can conservatively assume that a
store operation precedes the first request generated by the task. Hence, the following
Constraints (17)–(19) hold:

y ≤ NO L (17)

x ≤ NC L + NC S (18)

x + y ≤ NO S + NC S + 1 (19)

We can then obtain an upper bound on t T ask
AC by simply summing the contribution of

each case according to Table 4: (1) open stores add no latency; (2) y open loads add
latency tW T R · y; the remaining NO L − y requests add no latency; (3) x close requests
add latency (tdev +�tS) · x ; in the worst case, the remaining NC L + NC S − x requests
add latency (tdev +�tL) ·(NC L + NC S −x), since the latency for Case-2 is higher than
for Case-3. The sum of all contributions is equivalent to Eq. (14). Since furthermore
�tS − �tL ≥ tW T R , Eq. (14) can be maximized by taking the maximum value of
x , which is min(NC L + NC S, NO S + NC S + 1) based on Constraints (17), (18), and
then taking the maximum value of y based on Constraints (17), (19) and the computed
value of x , which is min(NO L , NO S + NC S + 1 − x); these are the values computed
in Eqs. (15), (16), hence the lemma follows. ��

The final DRAM event that needs to be considered in the analysis is the refresh,
according to arbitration Rule-5 in Sect. 4. We start by computing the time required to
issue the static refresh command sequence, which we call tRE F S . Figure 12 shows the
schedule for the command sequence, assuming that it starts at time t0. A Pre-charge
All command is used to close all opened banks. Since the sequence is static, we then
include a number of ACT commands equal to the total number of banks in the device;
if a bank is close prior to the start of the sequence, the corresponding ACT command is
simply changed to NOP (no operation). We construct the sequence in such a way that
no command in the global FIFO queue can be stalled by any command issued during
the sequence; this ensures that the maximum latency introduced by the sequence is
equal to tRE F S .

We can divide the latency for the refresh sequence in five parts: (1) the time from
t0 until the first PRE command can be issued, tAP (Arrival-to-PRE); (2) the time from
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(a)

(b)

Fig. 12 Refresh static sequence

issuing the Pre-charge all command to the REF command, which is simply the tR P

timing constraint; (3) the refresh time tRE F ; (4) the time from end of refresh to issuing
the last ACT, tR A (REF-to-ACT ); (5) and the time from issuing the last ACT to the
end of the command sequence, tAE (ACT-to-End).

tAP : in the worst case, any command could have been issued at time t0 − 1 before
the start of the refresh sequence. Hence, we need to consider all possible timing
constraints between any previous command and a P RE command, leading to the
following expression for tAP :

tAP = max(tR AS, tRT P , tW L + tBU S + tW R) − 1. (20)

tR A: we issue ACT commands in groups of R commands each, where each command
in a group targets a different rank. Since there are no timing constraints between
ACT commands to different ranks, each group requires max(tR R D, R) clock cycles.
However, since we need to issue 8 groups total, one for each bank, the fifth group can
be delayed by the tF AW timing constraint. Hence, we obtain a latency:

tR A = max
(
tF AW , 4 · max(tR R D, R)

) + 3 · max(tR R D, R) + R − 1. (21)

Note that the final R − 1 term accounts for the fact that we only consider the latency
up to the clock cycle when the last ACT in the eighth group is issued.
tAE : since we want to ensure that no command in the global queue is delayed by
commands in the refresh sequence, we need to wait for the longest timing constraint
between an ACT command and any other command issued after ending the sequence.
This results in an added latency component:
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tAE = max
(
tR AS, tRC D, tRC − tR P

)
. (22)

Note that the last component tRC − tR P accounts for the situation where after the end
of the refresh sequence, a bank is closed by a PRE command and then a new row in
that bank is opened by another ACT command tR P cycles later; since there could exist
a timing constraint tRC between the last ACT in the sequence and the following ACT
command, we wait for tRC − tR P before ending the refresh sequence and allowing the
PRE command to be scheduled.

Based on Eqs. (20)–(22), the length of the refresh sequence is then:

tRE F S = tAP + tR P + tRFC + tR A + tAE . (23)

It remains to compute the total refresh latency imposed on the task under analysis. Let
tcomp be the task’s computation time, i.e., its execution time assuming that memory
requests have zero latency. Since in the worst case, the task can be delayed by up
to tRE F S cycles every tRE F I , this is equivalent to saying that the task can execute
undisturbed for tRE F I − tRE F S every tRE F I ; hence, the number of refreshes can be
upper bounded as

⌈
(tcomp + t T ask

AC + t T ask
C D )/(tRE F I − tRE F S)

⌉
, and we obtain the task

computation time texec as:

texec = tcomp + t T ask
AC + t T ask

C D +
⌈ tcomp + t T ask

AC + t T ask
C D

tRE F I − tRE F S

⌉
· tRE F S . (24)

7 Shared data

A final but important discussion is relative to data sharing in hard real time systems.
Sharing between tasks executed on the same core does not introduce any change in
the analysis, since the two tasks cannot be executed at the same time. Hence, we
distinguish two different cases: (1) a task executed on a core communicates via shared
memory with other tasks executed on different cores; (2) I/O communication where a
core must share I/O data with a DMA requestor. In the first case, all communicating
cores must be able to access the shared data. To support this, the memory controller
is modified as shown in Fig. 13. First, the set of communicating cores that share data
are grouped into a shared queue partition in the front end, where each requestor has a
request queue within the shared queue partition. A round robin arbiter is used for the
shared queue partition. In the back end, the bank or set of banks that contains the shared
data for the set of communicating cores are partitioned as a “virtual” requestor, which
has a private command buffer shown as the “virtual” buffer in Fig. 13. If there are
multiple sets of communicating cores that share data, then each set of communicating
cores have a shared queue partition and virtual buffer. Note that all requestors still
have their own private request queues and command buffers for requests that are not
accessing shared data. Therefore, each requestor can issue a request to either its own
private queues (for non-shared data) or to the shared queue. Assume there are M real
requestors and s virtual requestors in the system. As a result, the size of the global
FIFO is equal to M + s, i.e., the number of virtual buffers plus the number of private
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Fig. 13 Modified memory controller to handle shared data

buffers; similarly, when computing the latency of requests targeting a private queue
according to Sect. 5, a number of requestors equal to M + s must be considered.

To guarantee predictable timing, a round robin arbitration is used among the com-
municating cores for access to the virtual requestors. Since communicating requestors
can close each others’ rows in the virtual requestor partition, one must assume that all
requests issued by a virtual requestor are close requests. Assume that the task under
analysis is making a request to one virtual requestor, and let k be an upper bound to
the number of requestors that access this virtual requestor (including the task under
analysis). The worst case latency for a single request to shared data for the task under
analysis is then:

t Req
Shared(Load) =

k−1∑

i=1

t Req
Other,i (M + s − 1) + t Req

Analysis(Load, M + s − 1), (25)

for a load request, while for a store request it is:

t Req
Shared(Store) =

k−1∑

i=1

t Req
Other,i (M + s − 1) + t Req

Analysis(Store, M + s − 1). (26)

Note t Req
Other,i (M + s − 1) is the latency of a single request for each of the k − 1 other

requestors that are contending for shared data when the request reaches the front of
the virtual buffer until data is transferred. It is calculated according to Eq. (12) but
with M + s − 1 number of requestors contending (s virtual buffers plus M − 1 private
buffers); this is because the task under analysis is executing on an in-order core and is
making a request to shared data and hence can not have a request in its private buffer.
For t Req

Analysis , it is the single request latency for the task under analysis when either a
load or store request reaches the front of virtual buffer, again computed according to
Eq. (12) with a number of contending requestors of M + s − 1.

To derive the total latency for accessing shared data for the task under analysis,
assume the number of loads to shared data is NSL and number of stores to shared data
is NSS for the task under analysis. Then the total latency for shared data accesses is:
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t T ask
Shared = NSL · t Req

Shared(Load) + NSS · t Req
Shared(Store). (27)

To finish computing Eq. (27), we now need to determine whether the worst case latency
is obtained when each of the remaining k − 1 requests of other requestors is a load or
when it is a store. Note that in the worst case, the first request can always be preceded
by a close store. Hence, based on the decomposition in Eq. (12) and in Table 4, we
have t Req

Other,1 = tdev + �tS + tC D , where tC D can either be tWrite
C D or t Read

C D ; in the first
case, the tAC for the next request will be tdev + �tS , while in the second case, it will
be tdev + �tL . In summary, if all k − 1 other requestors generate a store, we obtain
t Req
Shared = k · (tdev + �tS) + (k − 1) · tWrite

C D + t Analysis
C D , where t Analysis

C D is either a
write or a read based on the request of the task under analysis; while if all k − 1 other
requestors generate a load, t Req

Shared = k ·tdev +�tS +(k−1)·(�tL +t Read
C D )+t Analysis

C D .
Taking the maximum of the two terms results in:

t Req
Shared = k · tdev + �tS + t Analysis

C D + (k − 1) · max
{
�tS + tWrite

C D ,�tL + t Read
C D

}
.

(28)

Since the activity of the virtual requestors are independent from the activity of the
private requestors, we can simply add the computed total latency for shared accesses
t T ask
Shared to the other latency components for the task under analysis. Hence, following

Equation 24, the resulting task’s execution time is:

texec = tcomp+t T ask
AC +t T ask

C D +t T ask
Shared +

⌈
tcomp + t T ask

AC +t T ask
C D + t T ask

Shared

tRE F I − tRE F S

⌉

· tRE F S .

(29)

This mechanism works well for a significant number of existing and envisioned
real-time systems, for example, integrated modular avionics systems (Radio 1991),
which are composed of a set of software partitions, one for each application, and each
partition is allocated on a single core. In this case, the amount of data shared among
partitions is typically either small or zero. Note that either an OS or a hypervisor still
needs to run on all cores, hence a shared kernel partition is always needed.

Even when the system is structured as a set of software partitions, high-speed I/O
still requires data to be shared among cores and DMA requestors. In this case, the
same approach as in Kim et al. (2013) can be used: we assume that a global schedule
is computed, where the execution of a software partition and each DMA requestor
that performs input/output for that partition is not overlapped in time. As in Kim et
al. (2013), we can argue that this static I/O scheduling approach is in fact common for
safety-critical applications. We can thus support I/O communication in the back-end
by treating each DMA as a separate requestor. The front-end is then modified to allow
each core to access either its own private bank partition, or the partition of any DMA
requestor used by that core; the global schedule ensures that there is no contention
for access to the DMA bank partition. For example, when a partition A is executing
on core 1, the DMA for partition A will not be executing and hence does not access
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data at same time. When core 1 is not executing partition A, then DMA can access the
shared bank.

8 Evaluation

In this section, we directly compare our approach against the AMC (Paolieri et al. 2013)
since AMC employs a fair round robin arbitration that does not prioritize the requestors,
similarly to our system. Note that since we do not have access to the implementation
code in Paolieri et al. (2013), we implemented a simplified AMC simulator based
on optimized static message groups similar to Akessson et al. (2007); the resulting
analytical bounds do not change since the worst case per-request access time for a given
device and number of interleaved banks are the same as in Paolieri et al. (2013). We
do not compare against Akessson et al. (2007) because they use a non-fair arbitration.
While Goossens et al. (2013) uses a fair work-conserving TDM arbitration, we do not
compare against it because in the worst case, as discussed in Sect. 3, all requests must
be treated as close requests; therefore, the analytical bounds for Goossens et al. (2013)
would be the same as for Paolieri et al. (2013).6

We show worst case analytical bounds as well as simulation results. The worst
case analytical bounds are shown for both synthetic and CHStone benchmark (Hara
et al. 2008). The former is used to show how the latency bound varies as various
task parameters are changed. We show results for three data bus sizes, 64, 32 and 16
bits. Since AMC uses interleaved bank, for 64 bits data bus, it does not make sense
to interleave any banks together because the size of each request would be too large
compared to cache block size (64 bytes) and this can be wasteful as discussed in
Sect. 3. For 32 bits data bus, AMC interleaves over two banks while our approach
needs to make two separate requests as discussed in Sect. 2.2; for 16 bits data bus,
AMC interleaves over four banks and our approach makes four requests. In addition,
note that AMC only considers devices with one rank. However, results for multiple
ranks are shown in order to study its effect on latency bounds. The memory device used
is DDR3-1333H. Since AMC was originally described for a slower DDR2 device, we
recomputed the length of AMC static command groups based on the timing parameters
of the employed DDR3 device.

8.1 Experiment methodology

For synthetic benchmark, we only show the worst case analytic bounds as various
benchmark parameters are changed. The worst case latency bound only depends on the
characteristics of the benchmark and not on the activity of other requestors. Therefore,
the analysis only takes benchmark characteristics, M (total number of requestors) and
memory device parameters as input and computes the average worst case latency
bound for a single request (i.e., it computes the total latency for multiple requests and
divide by the number of requests to get average single request latency). Since it is a

6 Furthermore, no simulation model or implementation of the controller in Goossens et al. (2013) is publicly
available.
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Table 5 Summary of CHStone
benchmark

Benchmark Number of request Row hit ratio

adpcm 584 0.44

aes 627 0.45

bf 940 0.30

gsm 541 0.48

jpeg 1438 0.29

mips 521 0.44

motion 575 0.40

sha 758 0.52

dfadd 684 0.43

dfdiv 647 0.46

dfmul 664 0.44

dfsin 714 0.44

synthetic benchmark, no actual memory traces are available and hence a worst case
request pattern is computed according to Sect. 6. Essentially, synthetic benchmarks
are used to show how the worst case latency bound would vary if an actual benchmark
had these characteristics.

For the CHStone benchmark suite (Hara et al. 2008), we show both analytic bounds
and simulation results. For each benchmark, we obtain the memory trace by running
the benchmark on the gem5 (Binkert et al. 2011) architecture simulator; we employed a
simple in-order timing model using the x86 instruction set architecture as our objective
is the evaluation of the memory system rather than detailed core simulation. The core
is clocked at 1 GHz with private level (LVL) 1 and LVL 2 cache. LVL1 cache is
split 32 kB instruction and 64 kB data. LVL2 is unified cache of 2 MB and cache
block size is 64 bytes. We believe that these parameters are representative of high-
performance embedded platforms such as the Freescale P4080. The DRAM latency in
gem5 simulator is set to zero. Therefore, each memory trace contains the timestamp
when each request was sent to main memory (i.e. last level cache miss) and the time
gap between two consecutive request is the time spend in the rest of the system such
as CPU and cache. Then the worst case analysis or simulation will add the realistic
memory delay for each request and finally output the cumulative execution time of the
entire benchmark. Table 5 summarizes the characteristics of the tested benchmarks.
Note that for our settings, all memory requests produced by the core are reads since all
benchmarks are small enough to fit in last level cache and the number of conflict misses
is smaller than the size of the employed write back buffer. Since memory traces were
obtained, no worst case pattern is needed since the order of requests are assumed to be
known; instead, we simply computed the worst case latency of each request based on
the type of the previous request according to Table 4. The resulting computation takes
linear time in the number of memory requests and can scale to much larger traces that
the ones in Table 5.

In addition, we implemented a cycle accurate simulator of our memory controller in
Python. The implementation details and the source code of the simulator and complete
numeric results can be found in Wu and Pellizzoni (2015). In the computation of
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analytic bound, only the memory trace of benchmark under analysis is required and
traces of other interfering requestors are not needed.

However, for simulation results, the other requestors are running the lbm benchmark
from SPEC2006 CPU suite (Henning 2006), which is highly bandwidth intensive. We
obtained the memory trace of the lbm benchmark from gem5. Then for the cumulative
latency simulation, both lbm trace and traces of benchmarks under analysis are used
as input to our simulator. Note that lbm benchmark is executing on an out of order
core that can generate up to 20 outstanding request to the memory controller while
benchmark under analysis is executing on an in-order core in our simulator.

8.2 Synthetic benchmark

Since synthetic benchmark is used, various parameters can be changed and fed as input
to the analysis to observe how worst case latency bound changes. The parameters that
characterize a benchmark are row hit ratio and ratio of loads and stores.The row hit
ratio of the benchmark determines the number of open and close requests. Figure 14
shows the result of 4 and 16 requestors for 64, 32 and 16 bits data bus. It shows how
the average worst case latency (y-axis) changes as the row hit ratio (x-axis) is varied
between 0 and 100 %. In addition, the store percentage is arbitrarily fixed at 20 % of
total requests (i.e., 20 % stores and 80 % loads). However, for a real benchmark the
number of load and store requests would be obtained as the output of a static analysis
tool such as (Bourgade et al. 2008), with the derived row hit ratio being a safe lower
bound.

In the figures, AMC is a straight line since they use close row policy, therefore the
latency does not depend on row hit ratio. The analytic bound for 1, 2 and 4 ranks are
shown for our approach since almost all current DRAM devices only go up to 4 ranks
but it may increase in the future. Note that the requestors are divided evenly among the
ranks. Since open row policy is used, the latency improves as row hit ratio increases.
For 4 requestors and 64 bits bus, for a single rank our approach is between 23 and 56 %
better than AMC for 0 and 100 % row hit ratio respectively. The improvement is even
greater for 16 requestors. Note that in these cases our approach performs better than
AMC even when all requests are close because we are able to exploit bank parallelism
thanks to the private bank assumption. For 4 requestors and 32 bits data bus of a single
rank, our approach performs 16 % worse than AMC for 0 % row hit ratio but it is up to
16 % better for 100 % row hit. For 16 bits data bus, AMC performs significantly better;
this is expected since AMC can efficiently interleave over 4 banks, while our memory
controller must issue 4 consecutive memory requests. In summary, as discussed in
Sect. 3, our solution is specifically targeted at systems with large data buses.

Note that 2 and 4 ranks performs better than single rank when row hit ratio is low
because the interference on ACT commands is reduced. It is interesting to note that
for 4 requestors and 4 ranks for both data buses, the latency is up to 27 % better than
1 rank, this is because requestors are divided evenly among ranks: each rank only has
1 requestors and hence there are no write-to-read groups at all. For 16 requestors, the
latency of 1, 2 and 4 ranks are very similar to each other but more ranks tend to do
better when row hit is low due to reduced interference on ACT commands. When row
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(b) 16 Requestors 64 bits bus
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(c) 4 Requestors 32 bits bus
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Fig. 14 Synthetic benchmark results

hit ratio is high, the latency bound is the same for this particular device. In general, if
there are more ranks, there will be more rank-to-rank switches while less ranks will
have more read-to-write switches. For this particular device, the numbers happen to
be the same.

Table 6 shows the average worst case latency for a few DDR3 devices of different
speed. The number of requestors is fixed at 4, row hit is 40 % and store percentage is
20 %. As the speed of DRAM devices becomes faster, our approach improves rapidly
compared to AMC. For example, comparing 800D and 2133M devices, the worst case
latency decreases by 45 % for our approach (149–102.59 ns) while only by 14 % for
AMC (185–163 ns). This is because as clock frequency increases in memory devices,
the difference in the latency between open and close requests is increasing. Therefore,
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Table 6 Average worst case latency (ns) of DDR3 devices

Devices 800D 1066F 1333H 1600K 1866L 2133M

AMC-64 bits 185 185.27 180.9 178 169.84 163

1Rank-64 bits 149 132.94 121.35 116.42 108.71 102.59

close row policy becomes too pessimistic, while one can argue that open row policy
is better suited for current and future generations of memory devices. Finally, varying
the store percentage in the experiments does not have significant effect on the trends
discussed above.

8.3 CHStone benchmark

All twelve benchmarks in the CHStone benchmark suite were used for evaluation and
Figs. 15 and 16 show the result for 4 and 16 requestors with varying data bus size,
respectively. Note that the y-axis is the normalized execution time of the benchmarks
against the worst case analytical bound of AMC. The T -bars are the worst case ana-
lytical bound while rectangular boxes with shades are simulation results. Therefore
the T -bar of AMC is always 1 since everything else is normalized against it.

First, let us compare the worst case analytical bounds (T -bars) in the figures. For 4
requestors and 64 bits data bus for a single rank, our approach is between 0 and 26 %
better than AMC (the lower the value on the y-axis the better the improvement). For
16 requestors and 64 bits data bus for a single rank, the controller is between 7 and
44 % better than AMC. Therefore, as the number of requestors increases, our approach
improves more since we can extract more parallelism out of the banks compared to a
close row policy used in AMC. The highest improvement is shown by gsm and motion
while the lowest improvement is shown by jpeg. The amount of improvement depends
on the benchmark itself. Specifically, it depends on both the row hit ratio as well as
the stall ratio, i.e., the percentage of time that the core would be stalled waiting for
memory access when the benchmark is executed in isolation without other memory
requestors. The row hit ratio ranges from 29 % (jpeg) to 52 % (sha) and stall ratio
ranges from 3 % (jpeg) to 36 % (motion) for all benchmarks. Note that even for 32
bits data bus, most of the benchmarks with 4 ranks performs better than AMC. Some
of the benchmarks performs worse than AMC for single rank, with maximum of only
3 % worse. The result shows that 2 and 4 ranks perform better than a single rank as
expected in the worst case since ACT commands have less interference. Finally, as
expected our solution performs significantly worse (up to 57 %) than AMC for 16 bits
data bus. Next, let us compare the simulation results (boxes with shades) in the figures.
For 4 requestors with 64 bits bus and 1 rank, the simulated time of our approach is
between 5 and 55 % better compared to AMC. While for 16 requestors with 64 bits
bus and 1 rank, our approach is between 17 and 78 % better than AMC. Even for 4
requestors with 32 bits bus and 1 rank, the improvement is up to 50 % better than
AMC, while in the case of 16 bits data bus, results are between 4 and 30 % better than

123



www.manaraa.com

Real-Time Syst (2016) 52:761–807 795

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.10

adpcm aes bf gsm jpeg mips mo�on sha dfadd dfdiv dfmul dfsin

N
or

m
al

ize
d 

Ex
ec

u�
on

 T
im

e
AMC 1 Rank 2 Rank 4 Rank

(a) 4 Requestors 64 bits bus

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.10

adpcm aes bf gsm jpeg mips mo�on sha dfadd dfdiv dfmul dfsin

N
or

m
al

ize
d 

Ex
ec

u�
on

 T
im

e

AMC 1 Rank 2 Rank 4 Rank

(b) 4 Requestors 32 bits bus

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

adpcm aes bf gsm jpeg mips mo�on sha dfadd dfdiv dfmul dfsin

N
or

m
al

ize
d 

Ex
ec

u�
on

 T
im

e

AMC 1 Rank 2 Rank 4 Rank

(c) 4 Requestors 16 bits bus

Fig. 15 Simulation 4 requestor result

AMC. Again the highest improvements are shown by benchmarks with high stall ratio
and row hit ratio.

Next, notice that the difference between simulated and analytical time (T -bar vs.
box) for AMC is quite small, the maximum difference is less than 10 % of analytical
bound. This suggest that their controller behaves very close to the theoretical worst
case bound since close row policy is used. However, the difference between simulated
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Fig. 16 Simulation 16 requestor result

and analytical time of our approach varies. For 4 requestors with 64 bits data bus and
1 rank, the difference ranges from 6 % (jpeg) to 30 % (motion) of analytical bound; in
general, the difference is significant for all benchmark with non-negligible stall ratio.
There are two main reasons for such difference. First, the worst case analysis presented
in Sect. 5 assumes a specific pattern of interfering commands from other requestors,
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in particular alternating read and write CAS. The probability that other requestors
generate exactly such worst case pattern of CAS commands at run-time is clearly
low, albeit non zero. Second, the proposed per-request analysis is not tight, especially
for close requests: our decomposition assumes that each of the PRE, ACT and CAS
commands suffer maximal interference by all other requestors, but in reality and as
an example, if a requestor delays an ACT command of the requestor under analysis,
it might not be able to cause maximal interference of the subsequent CAS command.
Furthermore, the lbm benchmark executed on interfering requestors has significant row
hit ratio; hence, the ACT delay suffered by the requestor under analysis in simulation
is much lower than the worst case analytical bound. Despite such pessimism, our
analytical bounds are still better than AMC for bus sizes of 32 bits or larger.

Another interesting and counter-intuitive trend is that for 2 and 4 ranks the simu-
lation results are worse compared to 1 rank, while the analytical bounds show that 2
and 4 ranks perform better. This is because in the analysis, the interference for ACT
in multiple ranks is reduced since the requestors are divided among the ranks; the
number of requestors that can issue an ACT to contend with core under analysis is
reduced. For the simulation, as discussed above the lbm benchmark does not usually
generate the worst case interference pattern and furthermore, lbm has more load than
store operations; hence, when increasing the number of ranks, the number of write-to-
read switches is not significantly reduced, while we still have to pay additional rank
to rank switching delay, thus leading to higher average latency.

8.4 Shared data

Finally, we evaluated the effect of shared data on both the analytical bounds and
simulation execution time. Figure 17 shows results for a system with 64 bits data bus,
1 rank and 8 total requestors: 7 real requestors plus a virtual requestor representing a
shared data partition among all real requestors. We perform two experiments where the
requestor under analysis runs with the motion and the jpeg benchmark from CHStone.
The benchmarks have been selected because based on the results in Figs. 15 and 16,
they show the largest and smallest improvements, respectively, when compared to
AMC; similarly to Sect. 8.3, all other requestors run lbm. We synthetically altered the
benchmark traces such that a certain percentage of memory requests, between 0 and
100 %, targets the shared data partition. For a given percentage of shared data, the
shared requests are chosen at random independently for each of the 7 real requestors.
We plot results based on both the analytical bounds (1 Rank for our controller and
AMC) and simulations (1 Rank-Simulation and AMC-Simulation.

At 0 % shared data, the analytical bound is 38 % (motion) and 5 % (jpeg) better than
AMC, and the simulation result is 55 % (motion) and 10 % (jpeg) better; this improve-
ment is in between the results for 4 and 16 requestors in Figs. 15, 16. The analytical
bound for our approach becomes higher than AMC when the shared data percentage
reaches 10 % for both benchmarks. This shows that our approach is competitive for
small values of shared requests; as discussed in Sect. 7, we would expect that in a
partitioned system, shared data partitions are only required for system software (OS
or hypervisor), which should account for a limited number of memory requests. Sim-
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Fig. 17 7 requestors 64 bits bus with 1 shared bank

ulated execution time shows smaller change, for similar reasons to the ones cited in
Sect. 8.3, and gets closer to the AMC simulation time while the percentage of shared
data increases.

9 Conclusions

This article presented a new worst case latency analysis that takes DRAM state infor-
mation into account to provide a composable bound. Our approach relies on a private
bank mapping scheme to avoid row interference between different requestors. In
turn, this allows us to effectively employ open row policy to reduce the latency for
consecutive requests targeting the same DRAM row. The article provides two main
contributions. First, based on the proposed model, we derive an upper bound on the
latency of a single memory request. Then, for a task running on a fully-timing com-
positional core, we show how to use the derived per-request bound to compute the
task’s worst-case execution time. Our approach is specifically targeted at multi-core
systems using modern DRAM devices with high clock rate and wide data buses. As
shown in our evaluation, under such conditions existing real-time DRAM controllers
tend to perform poorly, since they cannot effectively interleave over multiple banks.
On the other hand, for devices with smaller data bus size, the interleaving mechanism
tends to perform better. Our approach also assumes a partitioned system where each
application is mapped to a single core and communication between cores is handled
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through I/O devices. While the devised system can support communication through
shared memory, it involves a performance penalty.

The presented work could be extended in multiple directions. First of all, we plan
to synthesize and test the proposed controller on FPGA. Second, as discussed in
Sect. 8, our per-request analysis is pessimistic. An improved analysis could attempt
to model the relation among multiple interfering commands to tighten the latency
bounds, albeit deriving a worst case arrival pattern under such conditions is likely to
be very challenging due to the complexity of the involved DRAM timing constraints.
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tems. Any opinions, findings, and conclusions or recommendations expressed in this publication are those
of the authors and do not necessarily reflect the views of the sponsors.

Appendix: CAS-to-Data derivation

In this appendix, we formally show the derivation of the CAS-to-Data latency tC D .
We begin by providing the proofs of Lemmas 3 and 4.

Proof of Lemma 3 Note that since we assume that all requestors insert a CAS at t0,
all requestors must have finished transmitting their previous data by t0 at the latest.
Otherwise, if a requestor issues a CAS before t0 but finishes data transmission after t0,
then it can not insert another CAS into the FIFO due to arbitration Rule-1. Then, the
delay for the first CAS after t0 depends on the type of the last CAS before t0; hence,
we have three cases, namely: (a) the last CAS is a write of the same rank as the request
under analysis; (b) the last CAS is a read of the same rank; (c) the last CAS targets a
different rank. We next prove that the worst case scenarios for each of the three cases
are the ones depicted in Fig. 18.

For case (a) as depicted in Fig. 18a, at time t0, a requestor of rank r just finished
transmitting a write data. Therefore, if the first CAS after t0 is a read from rank r , the
read command would suffer a tW T R timing constraint. Hence, the time from t0 until
end of data of the first read would be tW T R + tRL + tBU S . However, if the write data
of rank r finished � time units before t0, then the overall delay of first CAS would
be decreased by � and hence finishing the write data exactly at t0 is the worst case.
If the first CAS after t0 is instead a write from rank r , the CAS can start immediately
at t0 since there are no timing constraints between write and write; hence, the delay is
simply tW L + tBU S .

For case (b) as shown in Fig. 18b, a requestor of rank r just finished transmitting
a read data at time t0. Hence, if the first CAS after t0 is a write command of rank r ,
it would suffer a tRT W from the time when the read before t0 was issued. However,
since tRL + tBU S ≥ tRT W for all JEDEC devices, the first write after t0 actually can
be issued immediately; therefore the delay is tW L + tBU S . Similarly, since there are
no constraints between read and read, the delay is tRL + tBU S if the first CAS after t0
is a read.

For case (c) in Fig. 18c, a CAS of rank r just finished transmitting data at t0 and
the first CAS after t0 is from another rank k. The only constraint between different
ranks is tRT R , which is the minimum gap between the end of data until the start of
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Fig. 18 Latency of First CAS
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next data transmission. However, since both tW L and tRL are greater than tRT R for all
devices, the first CAS command can be issued immediately. Thus, the delay is either
tRL + tBU S or tW L + tBU S depending on whether the first CAS is a read or write
respectively.

To conclude the proof, notice Eq. (10) takes the maximum of all the cases discussed
for read and write separately and hence captures the worst case delay for tF I RST . ��
Proof of Lemma 4 Since the FIFO is backlogged with only CAS commands, this
means that the CAS commands will be issued one after another as soon as possi-
ble without violating any timing constraints. The transition from the end of data of a
write command of rank r to the end of data of a read command of rank r is shown
in Fig. 18a and the delay is tW T R + tRL + tBU S . The delay for the transition from
the end of read data to write data of rank r is shown in Fig. 19a and is computed as
max{tRT W + tW L − tRL − tBU S, 0} + tBU S . Since tRT W + tW L ≥ tRL + tBU S for all
devices, the expression is reduced to tRT W + tW L − tRL . For the transition between
two CAS commands of different ranks as shown in Fig. 19b, the delay is simply
tRT R + tBU S since there are no additional constraints. For read-to-read or write-to-
write transitions of the same rank, the delay is simply tBU S since the only contention
is the shared data bus; in other words, the data are transferred continuously without
any gap between them. ��
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Fig. 20 Maximum write-to-read transition of one rank

As discussed in Sect. 5.2, we need to maximize the number of write-to-read tran-
sitions within the same rank. Therefore, the calculation for the maximum number of
write-to-read transitions is discussed next.

Lemma 6 Assuming the rank under analysis is rank r and all requestors enqueue a
CAS command at time t0 and the CAS under analysis is placed last in the FIFO, the
maximum number of write-to-read transitions in all ranks is expressed in Eq. (30).

TW R =
⎧
⎨

⎩

( ∑
j �=r

⌊
M j
2

⌋)
+

⌊
Mr −1

2

⌋
if CAS under analysis is write;

∑R
j=1

⌊
M j
2

⌋
if CAS under analysis is read.

(30)

Proof First, notice that grouping requestors of the same rank together will create
more write-to-read transitions since by definition, a write-to-read transition is between
requestors of the same rank. On the other hand, if requestors of same rank are separated
by placing commands of other ranks between them, this does not create any write-to-
read or read-to-write transitions, only rank-to-rank transitions. Hence, to maximize
write-to-read, one would only need to consider grouping requestors of the same ranks
together. Now, let us consider ranks that do not contain the core under analysis (i.e.,
j �= r ). Figure 20a shows two cases of a sequence of read (R) and write (W) commands
within one rank. The maximum number of write-to-read transitions is computed by
dividing the number of requestors in that rank by two and then taking the floor of the
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result which yields � M j
2 	; note that two requestors are needed to form a write-to-read

transition, and an odd one at the beginning or the end can not contribute to a write-
to-read transition by itself. For rank r (i.e., the rank under analysis), the maximum
number of write-to-read transitions depends on whether the CAS under analysis is a
read or write since it is the last CAS to transmit data (i.e., last in the FIFO). Figure 20b
shows the sequence of CAS commands for the rank under analysis in different cases.
The CAS under analysis is the white box in the figure and it is either a read (R) or
write (W). One can see that the read case is the same as the other ranks. While for a
write, it can not contribute a write-to-read transition since it is the last one in the FIFO.
Therefore, only the remaining Mr −1 requestors before it can contribute write-to-read
transitions and hence yields � Mr −1

2 	. Thus, taking the sum of all ranks yield Eq. (30)
and the lemma is shown to be correct. ��

Next, let us define a parameter E to manage the complexity related to maximizing
both tF I RST and tOT H E R , as discussed in relation to Fig. 11. We show that we need
to consider three cases, corresponding to E = 1, E = 2 and E = 3, respectively.

Definition 1 Assuming the rank under analysis is rank r , let E represent the various
cases to indicate whether there is an extra read available or not as follows:

E =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2 if ∃ j �= r s.t. M j is odd;

1 if ∀ j �= r, M j is even and Mr is odd and CAS under analysis is read;

1 if ∀ j �= r, M j is even and Mr is even and CAS under analysis is write;

0 otherwise.

(31)

For the first case, when E = 2, if there is any other rank for which the number of
requestors is odd as shown in the left part of Fig. 20a, then beginning with a read or
ending with a write does not affect the maximum write-to-read transitions and hence
choosing a read will help maximize tF I RST . The case of E = 1 is when other ranks
are all even but the rank under analysis can provide the extra read; for this to happen,
if Mr is odd, then the CAS under analysis must be a read (bottom left in Fig. 20b),
while if Mr is even, the CAS under analysis must be a write (top right in Fig. 20b).
Finally, E = 0 indicates that no rank has an extra read.

Notice by putting two consecutive write-to-read groups of the same rank together,
there is a read-to-write transition between them. While putting two groups of write-
to-read of different ranks together, there is a rank-to-rank transition between them.
Therefore, the problem becomes how to place the write-to-read groups such that the
latency is maximized. Two ILP (Integer Linear Programming) problems are defined
to compute tOT H E R . The variable x is the number of write-to-read transitions, y is the
number of read-to-write transitions and z is the number of rank-to-rank transitions.

Maximize:

x · DW R + y · DRW + z · DRN K (32)
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Subject to:

x + y + z = M − 1 (33)

x ≤ TW R (34)

z ≥ R − 1 (35)

x ∈ N, y ∈ N, z ∈ N (36)

Definition 2 Let t
′
OT H E R be the solution to the ILP problem defined in Eqs. (32)-(36).

Definition 3 Let t
′′
OT H E R be the solution to the same ILP problem in Eqs. (32)-(36)

with the exception of the constraint in Eq. (35), which is replaced with z ≥ R.

Lemma 7 An upper bound for the worst case latency of tC D is:

tC D =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

FR + t
′
OT H E R if E = 2;

FR + t
′
OT H E R if E = 1andR = 1;

FR + t
′′
OT H E R if E = 1andR ≥ 2;

FW + t
′
OT H E R if E = 0.

(37)

Proof Let t0 be the time at which the CAS command of the core under analysis (CAS
under analysis) is enqueued in the global arbitration FIFO queue and assume rank
under analysis is rank r . First, let us show that the worst case interference on the core
under analysis is produced when at time t0 there are M − 1 other CAS commands
enqueued before the CAS under analysis. First note that commands enqueued after
the CAS under analysis cannot delay it; if the CAS under analysis is blocked, then
any subsequent CAS command is also blocked due to arbitration Rule-4. PRE or ACT
commands of other requestors enqueued after the CAS under analysis can execute
before it according to arbitration Rule-3 if the CAS under analysis is blocked, but they
cannot delay it because those requestors access different banks or ranks, and there
are no timing constraints between CAS and PRE or ACT of a different bank or rank.
Each CAS of another requestor enqueued before the CAS under analysis contributes
to its latency for at least a factor of tBU S = 4 due to data bus contention. Now assume
by contradiction that a requestor has a PRE or ACT command enqueued before the
CAS under analysis at time t0. Since again there are no timing constraints between
such commands, the PRE or ACT command can only delay the CAS under analysis
for one clock cycle due to command bus contention. Furthermore, after the PRE or
ACT command is issued, any further command of that requestor would be enqueued
after the CAS under analysis. Hence, the requestor would cause a total delay of one
cycle, which is less than tBU S . Next, let us show that if all requestors enqueue their
CAS command at the same time, t0, is the worst case pattern. Requestors enqueueing
a CAS after t0 do not cause interference as already shown. If a requestor enqueues a
CAS at time t0 − � and finishes its data transmission after t0, the overall latency is
reduced by � since that requestor cannot enqueue another CAS before the CAS under
analysis at t0 due to arbitration Rule-1.
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Next, let us show the constraints in Eqs. (33)–(36) holds. The total number of
transitions is M − 1 since at time t0, all requestors enqueue a CAS into the FIFO
and the transition delay is the gap between consecutive data; the transition from t0 to
the first CAS is considered separately in tF I RST . Since at some point, the memory
controller must switch from servicing commands of one rank to another, the number
of rank transitions z must be greater or equal to R − 1 where R is the total number
of ranks in the system. The maximum number of write-to-read transitions is TW R as
proved in Lemma 6. Lastly, all transitions must be integer values since there can not
be fraction of a transition. Next, let us discuss the case when one of the other ranks
has an extra read singled out (i.e., E = 2). In this case, the first CAS can be a read as
shown in Figure 11b, which maximizes tF I RST since FR ≥ FW for all devices. This
still maintains the maximum number of write-to-read transitions. Therefore, tC D is
simply FR + t

′
OT H E R . Similarly, for the case when E = 1 and R = 1, the bound on

z remains the same as in Eq. (35); in this case, there are no rank-to-rank transitions
at all since there is only a single rank in the system resulting in z = 0. Therefore,
the first CAS can be a read without affecting the maximum number of write-to-read
transitions and hence the delay is still tC D = FR + t

′
OT H E R .

Next, we compute the case when there is more than one rank in the system and
rank r has an extra read but other ranks do not have a read (i.e., E = 1 and R ≥ 2).
If the extra read is placed as the first CAS, then the lower bound on z would increase
to R because rank r must transmit data after other ranks (since it contains the CAS
under analysis which is placed last in FIFO); this incurs an extra rank-to-rank switch
because the rank following the first read can not be rank r . Therefore, placing the read
as the first CAS leads to tC D = FR + t

′′
OT H E R while not placing the read first leads

to tC D = FW + t
′
OT H E R . Subtracting the two yields,

FR + t
′′
OT H E R − FW − t

′
OT H E R =

= FR − FW − (t
′
OT H E R − t

′′
OT H E R) =

= FR − FW − max{DRW − DRN K , 0}

The above equation hold since z increases by one when placing read as the first CAS,
which means that there must be one less write-to-read or read-to-write transitions
because total number of transitions is still M −1. However, since DW R is greater than
both DRW and DRN K , the number of write-to-read remains equal to upper bound of
x and number of read-to-write transitions must decrease by one. Therefore t

′′
OT H E R

has one more rank-to-rank switch compared to tOT H E R′ while tOT H E R′ has one more

read-to-write transition than t
′′
OT H E R . The computed difference is always greater than

zero for all devices. Therefore, the worst case latency is maximized by beginning with
the read as the first CAS resulting in FR + t

′′
OT H E R .

Finally, to conclude the proof, we consider the case when there is no extra read by
itself that could be used as the first CAS as already shown in Fig. 11a. It is possible
to switch the first write and read commands to make the first CAS a read. Doing so
will not increase the bound on z since it simply swaps the first write with the second
read. However, it will decrease write-to-read transitions by one and the new bound is
x ≤ TW R − 1. Since x decreases by one, and the total number of transitions is still
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M − 1, there must be an additional rank-to-rank or read-to-write transitions. Hence,
the delay starting with a write (i.e., keeping the write read group) minus starting with
a read would be,

FW − FR + (DW R − max{DRW , DRN K })

For the above equation, the maximum of read-to-write or rank-to-rank delay is
subtracted from DW R . The computed difference is always positive for all devices.
Therefore, in this case, the worst case latency is maximized by leaving the write-to-
read group and by beginning with a write resulting in tC D = FW + t

′
OT H E R . ��

Although an ILP formulation is used to simplify the proof of Lemma 7, the objective
function in Eq. (32) can be solved in a greedy manner. The value of x will always be
equal to the upper bound since it will maximize the number of write-to-read transitions,
then depending on the larger value between DRW and DRN K , either y or z will be
maximized respectively.

References

Akesson B, Goossens K, Ringhofer M (2007) Predator: a predictable SDRAM memory controller. In:
Proceedings of the 5th IEEE/ACM international conference on hardware/software codesign and system
synthesis, CODES+ISSS, pp 251–256

Akesson B, Steffens L, Strooisma E, Goossens K (2008) Real-time scheduling using credit-controlled static-
priority arbitration. In: 14th IEEE international conference on embedded and real-time computing
systems and applications, 2008. RTCSA ’08, pp 3–14

Binkert N, Beckmann B, Black G, Reinhardt SK, Saidi A, Basu A, Hestness J, Hower DR, Krishna T,
Sardashti S, Sen R, Sewell K, Shoaib M, Vaish N, Hill MD, Wood DA (2011) The gem5 simulator.
SIGARCH Comput Archit News 39(2):1–7

Bourgade R, Ballabriga C, Cass H, Rochange C, Sainrat P (2008) Accurate analysis of memory latencies
for WCET estimation. In: 16th international conference on real-time and network systems (RTNS),
pp 161–170

Bui D, Lee EA, Liu I, Patel HD, Reineke J (2011) Temporal isolation on multiprocessing architectures. In:
Proceedings of the 48th design automation conference, DAC, pp 274–279

Ecco L, Ernst R (2015) Improved DRAM timing bounds for real-time DRAM controllers with read/write
bundling. In: IEEE conference on real-time systems symposium (RTSS), 2015 (to appear)

Ecco L, Tobuschat S, Saidi S, Ernst R (2014) A mixed critical memory controller using bank privatization
and fixed priority scheduling. In: 20th IEEE conference on embedded and real-time computing systems
and applications (RTCSA), 2014, pp 1–10

Edwards SA, Lee EA (2011) The Case for the precision timed (PRET) machine. In: 44th ACM/IEEE design
automation conference, 2007. DAC ’07, pp 264–265

Gomony M, Akesson B, Goossens K (2013) Architecture and optimal configuration of a real-time multi-
channel memory controller. In: Design, automation test in Europe conference exhibition (DATE),
2013, pp 1307–1312

Gomony M, Akesson B, Goossens K (2015) A real-time multichannel memory controller and optimal
mapping of memory clients to memory channels. ACM Trans Embed Comput Syst 14(2):25

Goossens S, Akesson B, Goossens K (2013) Conservative open-page policy for mixed time-criticality mem-
ory controllers. In: Proceedings on design, automation and test in Europe conference and exhibition
(DATE), pp 525–530

Hara Y, Tomiyama H, Honda S, Takada H, Ishii K (2008) CHStone: a benchmark program suite for practical
C-based high-level synthesis. In: IEEE international symposium on circuits and systems, 2008. ISCAS
2008, pp 1192–1195

123



www.manaraa.com

806 Real-Time Syst (2016) 52:761–807

Hassan M, Hiren P, Pellizzoni R (2015) A framework for scheduling DRAM memory accesses for multi-core
mixed-time critical systems. In: IEEE real-time and embedded technology and applications symposium
(RTAS), 2015, pp 307–316

Henning J (2006) SPEC CPU2006 benchmark descriptions. ACM SIGARCH Compu Archit News 34(4):1–
17

Jalle J, Quinones E, Abella J, Fossati L, Zulianello M, Cazorla F (2014) A dual-criticality memory controller
(DCmc): proposal and evaluation of a space case study. In: IEEE real-time systems symposium (RTSS),
2014, pp 207–217

JEDEC (2012) DDR3 SDRAM Standard JESD79-3F
Kim D, Broman H, Lee E, Zimmer M (2015) A predictable and command-level priority-based DRAM

controller for mixed-criticality systems. In: IEEE real-time and embedded technology and applications
symposium (RTAS), 2015, pp 317–326

Kim H, de Niz D, Andersson B, Klein M, Mutlu O, Rajkumar RR (2014) Bounding memory interference
delay in cots-based multi-core systems. In: Real-time and embedded technology and applications
symposium (RTAS), pp 145–154

Kim J, Yoon M, Im S, Bradford R, Sha L (2013) Optimized Scheduling of multi-IMA partitions with
exclusive region for synchronized real-time multi-core system. In: Proceedings of design, automation
and test in Europe (DATE), pp 970–975

Kim S, Kim S, Lee Y (2012) DRAM power-aware rank scheduling. In: Proceedings of the 2012 ACM/IEEE
international symposium on Low power electronics and design, ISLPED ’12, pp 397–402

Krishnapillai Y, Zheng P, Pellizzoni R (2014) A rank-switching, open-row DRAM controller for time-
predictable systems. In: 26th Euromicro conference real-time systems (ECRTS), 2014, pp 27–38

Li Y, Akesson B, Goossens K (2015) Architecture and analysis of a dynamically-scheduled real-time
memory controller. In: Real-time system 2015, pp 1–55

Liu I, Reineke J, Lee EA (2010) A PRET architecture supporting concurrent programs with composable
timing properties. In: 2010 conference record of the forty fourth asilomar conference on signals,
systems and computers (ASILOMAR), pp 2111–2115

NXP (2015) P4080 website. http://www.nxp.com
Paolieri M, Quiñones E, Cazorla F (2013) Timing effects of DDR memory systems in hard real-time

multicore architectures: issues and solutions. ACM Trans Embed Comput Syst 12(1):64
Radio A (1991) ARINC Specification 651: design guidance for integrated modular avionics. Aeronautical

Radio Inc, Annapolis, prepared by the Airlines Electronic Engineering Committee
Reineke J, Liu I, Patel HD, Kim S, Lee EA (2011) PRET DRAM Controller: bank privatization for pre-

dictability and temporal isolation. In: Proceedings of the 7th IEEE/ACM/IFIP international conference
on Hardware/software codesign and system synthesis, CODES+ISSS, pp 99–108

Schliecker S, Negrean M, Nicolescu G, Paulin P, Ernst R (2008) Reliable performance analysis of a multicore
multithreaded system-on-chip. In: Proceedings of the 6th IEEE/ACM/IFIP international conference
on hardware/software codesign and system synthesis, CODES+ISSS, pp 161–166

Schliecker S, Negrean M, Ernst R (2010) Bounding the shared resource load for the performance analysis
of multiprocessor systems. In: Design, automation test in europe conference exhibition (DATE), 2010,
pp 759–764

Schranzhofer A, Pellizzoni R, Chen JJ, Thiele L, Caccamo M (2011) Timing analysis for resource access
interference on adaptive resource arbiters. In: 17th IEEE on real-time and embedded technology and
applications symposium (RTAS), 2011, pp 213–222

Shah H, Raabe A, Knoll A (2012) Bounding WCET of applications using SDRAM with priority based
budget scheduling in MPSoCs. In: Design, automation test in Europe conference exhibition (DATE),
2012, pp 665–670

Valsan P, Yun H (2015) MEDUSA: a predictable and high-performance DRAM controller for multicore
based embedded systems

Wang DT (2005) Modern DRAM memory systems: performance analysis and scheduling algorithm. PhD
thesis, University of Maryland at College Park

Wilhelm R, Grund D, Reineke J, Schlickling M, Pister M, Ferdinand C (2009) Memory hierarchies,
pipelines, and buses for future architectures in time-critical embedded systems. IEEE Trans Com-
put Aid Des Integr Circuits Syst 28(7):966–978

Wu Z, Pellizzoni R (2015) Memory simulator and results. https://ece.uwaterloo.ca/~rpellizz/techreps/
Mem-Sim.zip

123

http://www.nxp.com
https://ece.uwaterloo.ca/~rpellizz/techreps/Mem-Sim.zip
https://ece.uwaterloo.ca/~rpellizz/techreps/Mem-Sim.zip


www.manaraa.com

Real-Time Syst (2016) 52:761–807 807

Wu Z, Krish Y, Pellizzoni R (2013) Worst case analysis of DRAM latency in multi-requestor systems. In:
Real-time systems symposium (RTSS), pp 372–383

Yun H, Mancuso R, Wu Z, Pellizzoni R (2014) PALLOC: DRAM bank-aware memory allocator for per-
formance isolation on multicore platforms. In: Real-time and embedded technology and applications
symposium (RTAS), pp 155–166

Zheng Pei Wu graduated with M.A.Sc. in 2013 from the Electrical
and Computer Engineering Department at the University of Waterloo.
He received his B.A.Sc. in 2011 from University of Waterloo study-
ing Electrical Engineering. While at Waterloo, he was studying and
researching in the area of computer memory systems. His interests
are in hardware and software co-design, real time systems, operating
systems and compilers.

Rodolfo Pellizzoni obtained a Laurea degree in Computer Engineer-
ing from the University of Pisa in 2004, a Diploma degree from the
Scuola Superiore Sant’Anna in 2005 and a Ph.D. in Computer Sci-
ence from the University of Illinois at Urbana-Champaign in 2010.
In September 2010 he joined the Department of Electrical and Com-
puter Engineering at the University of Waterloo as an Assistant Pro-
fessor. Rodolfo’s main research interests are in embedded architec-
tures, real-time operating systems and timing analysis.

Danlu Guo is a Master student in Electrical and Computer Engi-
neering Department at the University of Waterloo. He received his
Bachelor’s degree in Electrical Engineering from the University of
Waterloo in 2013. His main research interests are in computer archi-
tecture, embedded system, and real-time operating systems.

123



www.manaraa.com

Reproduced with permission of copyright owner.
Further reproduction prohibited without permission.


	A composable worst case latency analysis for multi-rank DRAM devices under open row policy
	Abstract
	1 Introduction
	2 DRAM basics
	2.1 DRAM timing constraints
	2.2 DRAM row policy and mapping

	3 Related work
	4 Memory controller
	5 Worst case per-request latency
	5.1 Arrival-to-CAS
	5.1.1 Open request
	5.1.2 Close request

	5.2 CAS-to-Data

	6 Worst case cumulative latency
	7 Shared data
	8 Evaluation
	8.1 Experiment methodology
	8.2 Synthetic benchmark
	8.3 CHStone benchmark
	8.4 Shared data

	9 Conclusions
	Acknowledgments
	Appendix: CAS-to-Data derivation
	References




